Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. On Gradient like Properties of Population games, Learning models and Self Reinforced Processes
 
  • Details
Options
Vignette d'image

On Gradient like Properties of Population games, Learning models and Self Reinforced Processes

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Date de parution
2014-09-14T19:05:06Z
Mots-clés
  • math.DS
  • math.PR
  • math.DS

  • math.PR

Résumé
We consider ordinary differential equations on the unit simplex of $\RR^n$ that naturally occur in population games, models of learning and self reinforced random processes. Generalizing and relying on an idea introduced in \cite{DF11}, we provide conditions ensuring that these dynamics are gradient like and satisfy a suitable "angle condition". This is used to prove that omega limit sets and chain transitive sets (under certain smoothness assumptions)
consist of equilibria; and that, in the real analytic case, every trajectory converges toward an equilibrium. In the reversible case, the dynamics are shown to be $C^1$ close to a gradient vector field. Properties of equilibria -with a
special emphasis on potential games - and structural stability questions are also considered.
Identifiants
https://libra.unine.ch/handle/123456789/32615
_
1409.4091v3
Type de publication
preprint
Dossier(s) à télécharger
 main article: Benaim15b.pdf (346.04 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00