Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Reinforcement Learning in the Wild with Maximum Likelihood-based Model Transfer
 
  • Details
Options
Vignette d'image

Reinforcement Learning in the Wild with Maximum Likelihood-based Model Transfer

Auteur(s)
Hannes Eriksson
Debabrota Basu
Tommy Tram
Mina Alibeigi
Dimitrakakis, Christos 
Institut d'informatique 
Date de parution
2023
In
Computing Research Repository (CoRR)
Vol.
2302.09273
Mots-clés
  • Machine Learning (cs.LG)
  • Machine Learning (cs....

Résumé
In this paper, we study the problem of transferring the available Markov Decision Process (MDP) models to learn and plan efficiently in an unknown but similar MDP. We refer to it as \textit{Model Transfer Reinforcement Learning (MTRL)} problem. First, we formulate MTRL for discrete MDPs and Linear Quadratic Regulators (LQRs) with continuous state actions. Then, we propose a generic two-stage algorithm, MLEMTRL, to address the MTRL problem in discrete and continuous settings. In the first stage, MLEMTRL uses a \textit{constrained Maximum Likelihood Estimation (MLE)}-based approach to estimate the target MDP model using a set of known MDP models. In the second stage, using the estimated target MDP model, MLEMTRL deploys a model-based planning algorithm appropriate for the MDP class. Theoretically, we prove worst-case regret bounds for MLEMTRL both in realisable and non-realisable settings. We empirically demonstrate that MLEMTRL allows faster learning in new MDPs than learning from scratch and achieves near-optimal performance depending on the similarity of the available MDPs and the target MDP.
Identifiants
https://libra.unine.ch/handle/123456789/30962
_
10.48550/arXiv.2302.09273
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2302.09273.pdf (2.31 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00