Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Approximate Bayesian Geophysical Inversion using Generative Modeling and Subset Simulation
 
  • Details
Options
Vignette d'image

Approximate Bayesian Geophysical Inversion using Generative Modeling and Subset Simulation

Auteur(s)
Maalouf, Eliane 
Institut du management de l'information 
Editeur(s)
David Ginsbourger
Niklas Linde
Date de parution
2020
Résumé
We present preliminary work on solving geophysical inverse problems by exploring the latent space of a joint Generative Neural Network (GNN) model by Approximate Bayesian Computation (ABC) based on Subset Simulation (SuS). Given pre-generated subsurface domains and their corresponding solver outputs, the GNN surrogates the forward solver during inversion to quickly explore the input space through SuS and locate regions of credible solutions. Akin to ABC methods, our methodology allows to tune the similarity threshold between observed and candidate outputs. We explore how tuning this threshold influences the uncertainty in the solutions, allowing to sample solutions with a selected diversity level. Our initial tests were carried out with data from straight-ray (linear) tomography with Gaussian priors on slowness fields and Gaussian versus Gumbel observation noise distributions. We are presently testing the methodology on non-linear physics to demonstrate its applicability in more general inversion settings.
Nom de l'événement
Workshop Machine Learning and the Physical Sciences , NeurIPS2020
Identifiants
https://libra.unine.ch/handle/123456789/30850
Autre version
https://ml4physicalsciences.github.io/2020/
Type de publication
conference paper
Dossier(s) à télécharger
 NeurIPS_ML4PS_2020_47.pdf (1000.31 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00