Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Quasi-Online Groundwater Model Optimization Under Constraints of Geological Consistency Based on Iterative Importance Sampling
 
  • Details
Options
Vignette d'image

Quasi-Online Groundwater Model Optimization Under Constraints of Geological Consistency Based on Iterative Importance Sampling

Auteur(s)
Ramgraber, Maximilian 
Centre d'hydrogéologie et de géothermie 
Camporese, Matteo
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Salandin, Paolo
Schirmer, Mario 
Centre d'hydrogéologie et de géothermie 
Date de parution
2020-4
In
Water Resources Research
Vol.
6
No
56
De la page
26777
A la page
26798
Revu par les pairs
1
Résumé
The increasing use of wireless sensor networks and remote sensing permits real‐time access to environmental observations. Data assimilation frameworks tap into such data streams to autonomously update and gradually improve numerical models. In hydrogeology, such methods are relevant in areas of long‐term interest in water quality and quantity, for example, in drinking water production. Unfortunately, accurate hydrogeological predictions often demand a degree of geological realism, which is difficult to reconcile with the operational limitations of many data assimilation frameworks. Alluvial aquifers, for example, are sometimes characterized by paleo‐channels of unknown extent and properties, which may act as preferential flow paths. Gradually optimizing such fields in real‐time or quasi‐real‐time settings is a formidable task. Besides subsurface properties, ill‐specified model forcings are a further source of predictive bias, which an optimizer could learn to compensate. In this study, we explore the use of a quasi‐online optimizer based on the iterative batch importance sampling framework for a groundwater model of a field site near Valdobbiadene, Italy. This site is characterized by the presence of paleo‐channels and heavily exploited for drinking water production and irrigation. We use Markov chain Monte Carlo steps to explore new parameterizations while maintaining consistency between states and parameters as well as conformance to a multipoint statistics training image. We also optimize a preprocessor designed to compensate for potential bias in the model forcing. We achieve promising and geologically consistent quasi‐real‐time optimization, albeit at the loss of parameter uncertainty.
Identifiants
https://libra.unine.ch/handle/123456789/30440
_
10.1029/2019WR026777
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2023-01-19_110_4624.pdf (9.58 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00