Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Conceptualization and Calibration of Anisotropic Alluvial Systems: Pitfalls and Biases
 
  • Details
Options
Vignette d'image

Conceptualization and Calibration of Anisotropic Alluvial Systems: Pitfalls and Biases

Auteur(s)
Gianni, Guillaume 
Centre d'hydrogéologie et de géothermie 
Doherty, John
Brunner, Philip 
Centre d'hydrogéologie et de géothermie 
Date de parution
2018-6
In
Groundwater
Vol.
3
No
57
De la page
409
A la page
419
Revu par les pairs
1
Résumé
Physical properties of alluvial environments typically feature a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. Hydrogeological models are often calibrated under the assumptions of isotropic hydraulic conductivity fields and steady‐state conditions. We aim at understanding how these simplifications affect predictions of the water table using physically based models and advanced calibration and uncertainty analysis approaches based on singular value decomposition and Bayesian analysis. Specifically, we present an analysis of the information content provided by steady‐state hydraulic data compared to transient data with respect to the estimation of aquifer and riverbed hydraulic properties. We show that assuming isotropy or fixed anisotropy may generate biases both in the estimation of aquifer and riverbed parameters as well as in the predictive uncertainty of the water table. We further demonstrate that the information content provided by steady‐state hydraulic heads is insufficient to jointly estimate the aquifer anisotropy together with the aquifer and riverbed hydraulic conductivities and that transient data can help to reduce the predictive uncertainty to a greater extent. The outcomes of the synthetic analysis are applied to the calibration of a dynamic and anisotropic alluvial aquifer in Switzerland (The Rhône River). The results of the synthetic and real world modeling and calibration exercises documented herein provide insight on future data acquisition as well as modeling and calibration strategies for these environments. They also provide an incentive for evaluation and estimation of commonly made simplifying assumptions in order to prevent underestimation of the predictive uncertainty.
Identifiants
https://libra.unine.ch/handle/123456789/29237
_
10.1111/gwat.12802
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2021-05-04_110_3233.pdf (677.47 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00