Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose

Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose

Author(s)
Guillaume, Joseph H.A.
Jakeman, John D.
Marsili-Libelli, Stefano
Asher, Michael
Brunner, Philip  
Décanat de la faculté des sciences  
Croke, Barry
Hill, Mary C.
Jakeman, Anthony J.
Keesman, Karel J.
Razavi, Saman
Stigter, Johannes D.
Date issued
July 2019
In
Environmental Modelling & Software
No
119
From page
418
To page
432
Reviewed by peer
1
Subjects
Identifiability Response surface Non-uniqueness Derivative based methods Hessian Emulation Uncertainty
Abstract
Identifiability is a fundamental concept in parameter estimation, and therefore key to the large majority of
environmental modeling applications. Parameter identifiability analysis assesses whether it is theoretically
possible to estimate unique parameter values from data, given the quantities measured, conditions present in the
forcing data, model structure (and objective function), and properties of errors in the model and observations. In
other words, it tackles the problem of whether the right type of data is available to estimate the desired parameter
values. Identifiability analysis is therefore an essential technique that should be adopted more routinely in
practice, alongside complementary methods such as uncertainty analysis and evaluation of model performance.
This article provides an introductory overview to the topic. We recommend that any modeling study should
document whether a model is non-identifiable, the source of potential non-identifiability, and how this affects
intended project outcomes.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/62632
DOI
10.1016/j.envsoft.2019.07.007
-
https://libra.unine.ch/handle/123456789/29236
File(s)
Loading...
Thumbnail Image
Download
Name

2021-04-23_110_2277.pdf

Type

Main Article

Size

1.91 MB

Format

Adobe PDF

Checksum

(MD5):53433f0c2b8d25fe7d58f4298b5019a9

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

v2.0.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new