Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. The Steklov and Laplacian spectra of Riemannian manifolds with boundary
 
  • Details
Options
Vignette d'image

The Steklov and Laplacian spectra of Riemannian manifolds with boundary

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Girouard, Alexandre 
Institut de mathématiques 
Hassannezhad, Asma
Date de parution
2020-4-1
In
Journal of Functional Analysis
Vol.
6
No
278
De la page
1
A la page
32
Revu par les pairs
1
Résumé
Given two compact Riemannian manifolds $M_1$ and $M_2$ such that their respective boundaries $\Sigma_1$ and $\Sigma_2$ admit neighbourhoods $\Omega_1$ and $\Omega_2$ which are isometric, we prove the existence of a constant $C$ such that $
\sigma_k(M_1)-\sigma_k(M_2)
\leq C$ for each $k\in\N$. The constant $C$ depends only on the geometry of $\Omega_1\cong\Omega_2$. This follows from a quantitative relationship between the Steklov eigenvalues $\sigma_k$ of a compact Riemannian manifold $M$ and the eigenvalues $\lambda_k$ of the Laplacian on
its boundary. Our main result states that the difference $
\sigma_k-\sqrt{\lambda_k}
$ is bounded above by a constant which depends on the geometry of $M$ only in a neighbourhood of its boundary.

The proofs are based on a Pohozaev identity and on comparison geometry for principal curvatures of parallel hypersurfaces. In several situations, the constant $C$ is given explicitly in terms of bounds on the geometry of $\Omega_1\cong\Omega_2$.
Identifiants
https://libra.unine.ch/handle/123456789/28074
_
10.1016/j.jfa.2019.108409
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-02-19_777_7320.pdf (594.92 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00