Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Spatial Spread Sampling Using Weakly Associated Vectors
 
  • Details
Options
Vignette d'image

Spatial Spread Sampling Using Weakly Associated Vectors

Auteur(s)
Jauslin, Raphaël 
Institut de statistique 
Tillé, Yves 
Institut de statistique 
Date de parution
2020-8-11
In
Journal of Agricultural, Biological, and Environmental Statistics
Vol.
3
No
25
De la page
431
A la page
451
Revu par les pairs
1
Mots-clés
  • GRTS
  • Local pivotal method
  • Cube method
  • Stratification
  • GRTS

  • Local pivotal method

  • Cube method

  • Stratification

Résumé
Geographical data are generally autocorrelated. In this case, it is preferable to select spread units. In this paper, we propose a new method for selecting well-spread samples from a finite spatial population with equal or unequal inclusion probabilities. The proposed method is based on the definition of a spatial structure by using a stratification matrix. Our method exactly satisfies given inclusion probabilities and provides samples that are very well spread. A set of simulations shows that our method outperforms other existing methods such as the generalized random tessellation stratified or the local pivotal method. Analysis of the variance on a real dataset shows that our method is more accurate than these two. Furthermore, a variance estimator is proposed.
Identifiants
https://libra.unine.ch/handle/123456789/28050
_
10.1007/s13253-020-00407-1
Autre version
https://link.springer.com/article/10.1007/s13253-020-00407-1
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-08-11_951_3041.pdf (974.28 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00