Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Compact manifolds with fixed boundary and large Steklov eigenvalues
 
  • Details
Options
Vignette d'image

Compact manifolds with fixed boundary and large Steklov eigenvalues

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
El Soufi, Ahmad
Girouard, Alexandre 
Institut de mathématiques 
Date de parution
2019-8-22
In
Proc. Amer. Math. Soc.
Vol.
9
No
147
De la page
3813
A la page
3827
Résumé
Let $(M,g)$ be a compact Riemannian manifold with boundary. Let $b>0$ be the number of connected components of its boundary. For manifolds of dimension $\geq 3$, we prove that for $j=b+1$ it is possible to obtain an arbitrarily large Steklov eigenvalue $\sigma_j(M,e^\delta g)$ using a conformal perturbation $\delta\in C^\infty(M)$ which is supported in a thin neighbourhood of the boundary, with $\delta=0$ on the boundary. For $j\leq b$, it is also possible to obtain arbitrarily large eigenvalues, but the conformal factor must spread throughout the interior of $M$. This is in stark contrast with the situation for the eigenvalues of the Laplace operator, for which the supremum is bounded in each fixed conformal class. In fact, when working in a fixed conformal class, it is known that the volume of $(M,e^\delta g)$ has to tend to infinity in order for some $\sigma_j$ to become arbitrarily large. We also prove that it is possible to obtain large eigenvalues while keeping different boundary components arbitrarily close to each others, by constructing a convenient Riemannian submersion.
Lié au projet
Geometric Spectral Theory 
Identifiants
https://libra.unine.ch/handle/123456789/27977
_
10.1090/proc/14426
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-05-23_777_9405.pdf (215.99 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00