Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. The Steklov spectrum and coarse discretizations of manifolds with boundary
 
  • Details
Options
Vignette d'image

The Steklov spectrum and coarse discretizations of manifolds with boundary

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Girouard, Alexandre 
Institut de mathématiques 
Raveendran, Binoy
Date de parution
2018-8-22
In
Pure and Applied Mathematics Quarterly,
Vol.
2
No
14
De la page
357
A la page
392
Revu par les pairs
1
Résumé
Given $\kappa, r_0>0$ and $n\in\N$, we consider the class
$\mathcal{M}=\mathcal{M}(\kappa,r_0,n)$ of compact $n$-dimensional
Riemannian manifolds with cylindrical boundary, Ricci curvature
bounded below by $-(n-1)\kappa$ and injectivity radius bounded below
by $r_0$ away from the boundary. For a manifold $M\in\mathcal{M}$ we introduce a notion of
discretization, leading to a graph with boundary which is roughly
isometric to $M$, with constants depending only on $\kappa,r_0,n$. In
this context, we prove a uniform spectral comparison inequality
between the Steklov eigenvalues of a manifold $M\in\mathcal{M}$ and
those of its discretization. Some applications to the construction of
sequences of surfaces with boundary of fixed length and with
arbitrarily large
Steklov spectral gap $\sigma_2-\sigma_1$ are given. In particular, we obtain such a
sequence for surfaces with connected boundary. The applications are
based on the construction of graph-like surfaces which are obtained from
sequences of graphs with good expansion properties.
Lié au projet
Geometric Spectral Theory 
Identifiants
https://libra.unine.ch/handle/123456789/27974
_
10.4310/PAMQ.2018.v14.n2.a3
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-05-23_777_2048.pdf (1.31 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00