Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Weighted distributions
 
  • Details
Options
Vignette d'image

Weighted distributions

Auteur(s)
Graf, Monique 
Institut de statistique 
Maison d'édition
Université de Neuchâtel Institut de statistique
Date de parution
2018
Mots-clés
  • Analysis of survey data
  • multi-level model
  • generalized mixed model
  • weighting.
  • Analysis of survey da...

  • multi-level model

  • generalized mixed mod...

  • weighting.

Résumé
In a super-population statistical model, a variable of interest, defined on a finite population of size N, is considered as a set of N independent realizations of the model. The log-likelihood at the population level is then written as a sum. If only a sample is observed, drawn according to a design with unequal inclusion probabilities, the log-pseudo-likelihood is the Horvitz-Thompson estimate of the population log-likelihood.
In general, the extrapolation weights are multiplied by a normalization factor, in such a way that normalized weights sum to the sample size. In a single level design, the value of estimated model parameters are unchanged by the scaling of weights, but it is in general not the case for multi-level models. The problem of the choice of the normalization factors in cluster sampling has been largely addressed in the literature, but no clear recommendations have been issued. It is proposed here to compute the factors in such a way that the pseudo-likelihood becomes a proper likelihood. The super-population model can be written equivalently for the variable of interest or for a transformation of this variable. It is shown that the pseudo-likelihood is not invariant by transformation of the variable of interest.
Notes
Recherche
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/26651
Type de publication
working paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00