Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Quasi-Systematic Sampling From a Continuous Population
 
  • Details
Options
Vignette d'image

Quasi-Systematic Sampling From a Continuous Population

Auteur(s)
Wilhelm, Matthieu 
Institut de statistique 
Qualité, Lionel 
Institut de statistique 
Tillé, Yves 
Institut de statistique 
Date de parution
2017
In
Computational Statistics and Data Analysis
No
105
De la page
11
A la page
23
Revu par les pairs
1
Mots-clés
  • binomial process
  • point process
  • Poisson process
  • renewal process
  • systematic sampling.
  • binomial process

  • point process

  • Poisson process

  • renewal process

  • systematic sampling.

Résumé
A specific family of point processes are introduced that allow to select samples for the purpose of estimating the mean or the integral of a function of a real variable. These processes, called quasi-systematic processes, depend on a tuning parameter $r>0$ that permits to control the likeliness of jointly selecting neighbor units in a same sample. When $r$ is large, units that are close tend to not be selected together and samples are well spread. When $r$ tends to infinity, the sampling design is close to systematic sampling. For all $r > 0$, the first and second-order unit inclusion densities are positive, allowing for unbiased estimators of variance.

Algorithms to generate these sampling processes for any positive real value of $r$ are presented. When $r$ is large, the estimator of variance is unstable. It follows that $r$ must be chosen by the practitioner as a trade-off between an accurate estimation of the target parameter and an accurate estimation of the variance of the parameter estimator. The method's advantages are illustrated with a set of simulations.
Identifiants
https://libra.unine.ch/handle/123456789/24150
Autre version
https://arxiv.org/abs/1607.04993
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00