Options
Towards compact ultralow phase noise lasers and microwave signals based on new approaches
Auteur(s)
Editeur(s)
Date de parution
2019
Mots-clés
- Oscillateurs
- métrologie temps-fréquence
- bruit de fréquence
- bruit de phase
- stabilité de fréquence
- largeur de raie
- laser
- peignes de fréquence optique
- division de fréquence optique
- décalage de phase entre porteuse et enveloppe
- fréquence radio
- micro-onde
- oscillateur de transfert
- Oscillators
- time and frequency metrology
- frequency noise
- phase noise
- frequency stability
- linewidth
- laser
- mode-locked laser
- optical frequency combs
- optical frequency division
- carrier-envelope offset
- radio-frequency
- microwave
- transfer oscillator
Oscillateurs
métrologie temps-fréq...
bruit de fréquence
bruit de phase
stabilité de fréquenc...
largeur de raie
laser
peignes de fréquence ...
division de fréquence...
décalage de phase ent...
fréquence radio
micro-onde
oscillateur de transf...
Oscillators
time and frequency me...
frequency noise
phase noise
frequency stability
linewidth
laser
mode-locked laser
optical frequency com...
optical frequency div...
carrier-envelope offs...
radio-frequency
microwave
transfer oscillator
Résumé
Aujourd'hui, les signaux micro-ondes à bruit de phase le plus faible sont générés optiquement par division de fréquence d'une référence optique ultra-stable utilisant un peigne de fréquence femtoseconde. Dans l'approche couramment utilisée, la référence optique ultra-stable est obtenue par stabilisation en fréquence d'un laser sur une cavité optique à très faible coefficient d’expansion thermique, et la division en fréquence est effectuée en stabilisant optiquement un laser à verrouillage de mode au laser ultra-stable. Ces deux sous-systèmes sont assez complexes et encombrants, mais ils ont démontré des performances de pointe. <br> Dans cette thèse, des approches alternatives ont été étudiées pour la génération de micro-ondes à faible bruit basées sur un schéma d'oscillateur de transfert. Dans une première partie, une nouvelle méthode inspirée du concept de l'oscillateur de transfert a été développée et validée pour caractériser la fréquence d’offset (décalage de phase entre la porteuse et l’enveloppe, <i>carrier-envelope offset</i> en anglais, CEO) d’un peigne de fréquence optique sans s'appuyer sur la méthode traditionnelle d'auto-référencement et donc sans le besoin d’un spectre optique couvrant une octave de fréquence, qui est difficile à générer notamment avec des peignes à fréquence de répétition élevée. Cette méthode a ensuite été appliquée avec succès pour caractériser trois différents types de peignes de fréquence optiques générés à partir d'un laser à semi-conducteur à verrouillage de mode, d'un laser à l'état solide pompé par diode avec un taux de répétition de 25 GHz et d'un laser à cascade quantique émettant dans la région spectrale de l’infrarouge moyen. <br> En modifiant et en améliorant cette technique, on a démontré et caractérisé la génération d'un signal hyperfréquence à bruit de phase ultra-faible basé sur un oscillateur de transfert. La méthode a également été mise en œuvre à l'aide d'un micro-résonateur à peigne de Kerr pour une première démonstration de principe. <br> En outre, la stabilisation en fréquence d'un laser continu à cascade quantique émettant dans l'infrarouge moyen sur une ligne à retard optique est présentée pour la première fois et conduit à une largeur de raie inférieure à 10 kHz en utilisant un montage en espace libre. La même approche peut être appliquée dans le proche infrarouge avec un long délai utilisant des fibres optiques, donnant la possibilité d'atteindre une largeur de raie au niveau du hertz. <br> Les technologies développées dans cette thèse sont des composants attrayants pour les futurs générateurs de micro-ondes compacts à très faible bruit., Today, the lowest phase noise microwave signals are generated optically by frequency division of an ultra-stable optical reference using a femtosecond frequency comb. In the commonly used approach, the ultra-stable optical reference is obtained by frequency-stabilizing a laser to a high-finesse ultra-low expansion optical cavity, and the frequency division is performed by optically locking a mode-locked laser to the ultra-stable laser. Both sub-systems are fairly complex and cumbersome, but have demonstrated state-of-the-art performance. <br> In this thesis, alternative approaches have been investigated for low-noise microwave generation based on a transfer oscillator scheme. In a first part, a novel method inspired by the transfer oscillator concept has been developed and validated to characterize the offset frequency of a comb spectrum without relying on the traditional self-referencing method and, thus, without requiring an octave-spanning spectrum that is challenging to be generated, especially with high repetition rate frequency combs. This method has then been successfully applied to characterize three different types of comb spectra from a semiconductor mode-locked laser, a diode-pumped solid-state laser with 25-GHz repetition rate, and a quantum cascade laser frequency comb emitting in the mid-infrared spectral region. <br> By modifying and improving this scheme, ultra-low phase noise microwave signal generation based on a transfer oscillator was demonstrated and characterized. The method was also implemented with a micro-resonator Kerr-comb for a first proof-of-principle demonstration of frequency division performed with a Kerr comb. <br> In addition, frequency stabilization of a mid-infrared quantum cascade laser to an optical delay-line is presented for the first time and led to a sub-10-kHz linewidth using only a meter-scale free-space delay-line. The same approach can be applied in the near-infrared with a long fiber delay with the potential to achieve Hz-level linewidth. <br> The technologies developed in this thesis are attractive components for future compact ultra-low noise microwave generators.
Notes
Thèse de doctorat : Université de Neuchâtel, 2019
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger