Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Modeling of income and indicators of poverty and social exclusion using the Generalized Beta Distribution of the Second Kind
 
  • Details
Options
Vignette d'image

Modeling of income and indicators of poverty and social exclusion using the Generalized Beta Distribution of the Second Kind

Auteur(s)
Graf, Monique 
Institut de statistique 
Nedyalkova, Desislava 
Institut de statistique 
Date de parution
2014-12-2
In
Review of Income and Wealth
Vol.
4
No
60
De la page
821
A la page
842
Revu par les pairs
1
Mots-clés
  • income distribution
  • inequality
  • maximum pseudo-likelihood estimation
  • monetary indicators
  • sandwich variance estimator
  • income distribution

  • inequality

  • maximum pseudo-likeli...

  • monetary indicators

  • sandwich variance est...

Résumé
There are three reasons why estimation of parametric income distributions may be useful when empirical data and estimators are available: to stabilize estimation; to gain insight into the relationships
between the characteristics of the theoretical distribution and a set of indicators, e.g. by sensitivity plots; and to deduce the whole distribution from known empirical indicators, when the raw data are not
available. The European Union Statistics on Income and Living Conditions (EU-SILC) survey is used to address these issues. In order to model the income distribution, we consider the generalized beta distribution of the second kind (GB2). A pseudo-likelihood approach for fitting the distribution is considered, which takes into account the design features of the EU-SILC survey. An ad-hoc procedure for robustification of the sampling weights, which improves estimation, is presented. This method is compared to a non-linear fit from the indicators. Variance estimation within a complex survey setting
of the maximum pseudo-likelihood estimates is done by linearization (a sandwich variance estimator), and a simplified formula for the sandwich variance, which accounts for clustering, is given. Performance
of the fit and estimated indicators is evaluated graphically and numerically.
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/22495
_
10.1111/roiw.2014.60.issue-4/issuetoc;jsessionid=ABF2EA1C91AB811BE0A7E452FD690C10.f01t01
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00