Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Compositional analysis of a mixture distribution with application to categorical modelling
 
  • Details
Options
Vignette d'image

Compositional analysis of a mixture distribution with application to categorical modelling

Auteur(s)
Graf, Monique 
Institut de statistique 
Nedyalkova, Desislava 
Institut de statistique 
Date de parution
2013-12-10
De la page
53
A la page
63
Mots-clés
  • GB2 distribution
  • Mixture distribution
  • Maximum pseudolikelihood estimation
  • Sandwich variance estimator
  • Income distribution
  • Inequality and poverty indicators.
  • GB2 distribution

  • Mixture distribution

  • Maximum pseudolikelih...

  • Sandwich variance est...

  • Income distribution

  • Inequality and povert...

Résumé
Many probability distributions can be represented as compound distributions. Consider some parameter vector as random. The compound distribution is the expected distribution of the variable of interest given the random parameters. Our idea is to define a partition of the domain of definition of the random parameters, so that we can represent the expected density of the variable of interest as a finite mixture of conditional densities. We then model the probabilities of the conditional densities using information on population categories, thus modifying the original overall model. Our examples use the European Union Statistics on Income and Living Conditions (EU-SILC) data. For each country, we estimate a mixture model derived from the GB2 in which the probability weights are predicted with household categories. Comparisons across countries are processed using compositional data analysis tools. Our method also offers an indirect estimation of inequality and poverty indices.
Notes
, 2013
Nom de l'événement
CodaWork 2013
Lieu
Vorau, Austria
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/19407
Type de publication
conference paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00