Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. Measuring inequality in finite population sampling

Measuring inequality in finite population sampling

Author(s)
Langel, Matti  
Institut de statistique  
Editor(s)
Tillé, Yves  
Chaire de statistique appliquée  
Date issued
2012
Subjects
sondage estimation de variance indice de Gini courbe de Lorenz linéarisation revenu échantillonnage équilibré survey sampling variance estimation Gini index Lorenz curve linearization income balanced sampling
Abstract
Ce document se concentre sur l’estimation des mesures d’inégalité à l’aide de données d’enquête. La méthodologie proposée permet de tenir compte du caractère non-linéaire des mesures d’inégalité ainsi que de la complexité de la stratégie d’échantillonnage. Le premier chapitre est dédié à la présentation et à la définition des concepts principaux de l’étude quantitative des inégalités et de la théorie des sondages. Dans le second chapitre, plusieurs indices d’inégalité sont comparés au sein d’une étude empirique réalisée à l’aide de données réelles. La recherche se centre ensuite vers trois mesures d’inégalités spécifiques : le Quintile share ratio (QSR), l’indice de Gini et l’indice de Zenga. Ainsi, dans le troisième chapitre, nous montrons que la variance du QSR peut être estimée par linéarisation sans avoir recours à un lissage par noyau et qu’une simple transformation permet d’améliorer le taux de couverture de l’intervalle de confiance. Les deux chapitres suivants abordent les travaux de Corrado Gini sous un angle particulier, notamment à travers des réflexions historiques sur l’échantillonnage équilibré dont il a été l’un des pionniers, et sur l’estimation de variance de l’indice d’inégalité qui porte son nom. L’ultime chapitre est dédié à la présentation d’une mesure moins connue, l’indice de Zenga, pour laquelle nous proposons un estimateur de variance., This document focuses on the estimation of inequality measures for complex survey data. The proposed methodology takes into account both the complexity of these generally non-linear functions of interest and the complexity of the sampling strategy. The first chapter is dedicated to the presentation and definition of the main concepts used in both inequality and survey sampling theory. In the second chapter, a variety of inequality indices are compared in an empirical study on a real set of income data. Research is then directed towards three specific inequality measures: the Quintile share ratio (QSR), the Gini index and Zenga’s new inequality index. The third chapter shows that the variance of the QSR can be estimated by means of the linearization approach without applying a kernel smoothing, and that a simple transformation enhances the coverage rate of the confidence interval. The two following chapters discuss the work of Corrado Gini from an unusual angle. For instance, both balanced sampling (of which he is a pioneer) and variance estimation for the inequality measure that bears his name are discussed in a historical perspective. Zenga’s new inequality index is presented in the last chapter and a variance estimator is proposed.
Notes
Thèse de doctorat : Université de Neuchâtel, 2012 ; 2252
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/30132
DOI
10.35662/unine-thesis-2252
File(s)
Loading...
Thumbnail Image
Download
Name

00002252.pdf

Type

Main Article

Size

2.97 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new