Options
Greener perspectives in Conservation Science : design, characterization, and evaluation of bioformulations for the cleaning of altered indoor metal heritage
Auteur(s)
Editeur(s)
Von Reuss, Stephan
Maison d'édition
Neuchâtel : Université de Neuchâtel
Date de parution
2024
Nombre de page
250
Mots-clés
Résumé
L'avènement des principes de la "Chimie Verte" est désormais une force motrice inconditionnelle pour la recherche menée dans le domaine de la Science de la Conservation. L'attention portée aux risques potentiels liés aux méthodes de nettoyage conventionnellement employées dans la conservation des oeuvres d'art, qui reposent souvent sur l'utilisation de substances toxiques à base de pétrole, telles que les solvants et les agents complexants, est particulièrement importante. Dans ce contexte, la recherche doctorale présentée ici visait à explorer des alternatives plus écologiques pour le nettoyage des collections historiques en métal altérées.
Le problème central de la préservation des métaux réside dans le processus spontané et irréversible de corrosion vers lequel ils tendent naturellement. C'est pourquoi les conservateurs-restaurateurs (CRs) s'appuient normalement sur l'application de revêtements organiques pour protéger la surface métallique des agents atmosphériques (par exemple, l'eau, les espèces de sulfure gazeux). Toutefois, ces matériaux ont également tendance à se détériorer avec le temps sous l'effet de plusieurs facteurs environnementaux (température, lumière UV, etc.), ce qui entraîne une défaillance de ces systèmes de protection. Par conséquence, il est commun que l'apparence, la fonctionnalité ou les conditions de conservation des oeuvres d'art métalliques soient compromises par la présence de revêtements organiques altérés associés à des substrats métalliques sous-jacents corrodés, ce qui conduit à l'élimination nécessaire de ces deux caractéristiques de dégradation par les CRs.
Des solutions gélifiées vertes et innovantes ont donc été conçues pour traiter individuellement (action sélective) ou simultanément (double action contrôlée) la corrosion et les revêtements organiques altérés éventuellement présents sur les collections historiques en métal. Une grande attention a été accordée à la sélection des " composant-blocs " potentiellement renouvelables et biodégradables des gels. La recherche a conduit à une première étude de plusieurs bio-polymères, parmi lesquels le poly-3-hydroxybutyrate (PHB) a été sélectionné comme agent épaississant approprié pour concevoir des systèmes de nettoyage à double action. Deux organogels ont été développés à partir d'une matrice de poly-3-hydroxybutyrate, chargée de lactate d'éthyle et d'agents complexants pour l'élimination des revêtements organiques et de la corrosion, respectivement. Plus précisément, les potentialités des agents complexants biodégradables, tels que la déféroxamine B (DFO) et l'acide éthylènediamine-N,N′-disuccinique (EDDS), ont été explorées. Les cibles de nettoyage ont été sélectionnées comme étant les plus représentatives des alliages et revêtements organiques présents dans les collections historiques de métaux à l'intérieur. L'acier, le laiton et l'argent sterling ont donc été choisis comme substrats métalliques, tandis qu'une résine acrylique (Paraloid® B72) et une laque nitrocellulosique (Zaponlack) ont été les revêtements organiques étudiés.
Un protocole analytique multimodal a été réalisé sur les formulations gélifiées et les échantillons métalliques avant et après l'intervention de nettoyage afin d'évaluer l'efficacité et la fiabilité des méthodes de nettoyage. Globalement, les deux systèmes ont permis d'éliminer efficacement les matériaux organiques tout en assurant un nettoyage modéré de la corrosion. Ce résultat garantirait une intervention polyvalente, en ajustant le temps d'application des gels et la réitération, ce qui est une caractéristique recherchée pour le nettoyage contrôlé des collections historiques de métaux.
Dans une perspective audacieuse, les résultats obtenus ont été partagés avec les conservateurs-restaurateurs et la communauté scientifique afin de promouvoir l'exploitation des méthodes et matériaux innovants, tout en encourageant l'intérêt pour la recherche d'approches de production plus durables (par exemple, EDDS fabriqué sans utilisation de bromure d'éthylène) à l'échelle industrielle.
ABSTRACT
The advent of the Green Chemistry principles is nowadays an unconditional driving force for the research carried out in the field of Conservation Science. Great attention is currently addressed in response to the potential risks derived from cleaning methods conventionally employed in art conservation, which are frequently relying on the use of petroleum-based and toxic substances, such as solvents and complexing agents. Within this scenario, the doctoral research here discussed was addressed to explore greener alternatives for the cleaning of altered historical metal collections. The core issue for the preservation of metals lies in the spontaneous and irreversible process of corrosion towards which they naturally tend over time. Therefore, conservator-restorers (CRs) typically rely on the application of organic coatings to protect the metallic surface from atmospheric agents (e.g., water, gaseous sulphide species). However, also these materials tend to deteriorate through time due to several environmental factors (e.g., temperature, UV light), leading to a failure of these protective systems.
Consequently, it is common that the appearance, functionality, or conservation conditions of metal artworks are jeopardised by the presence of altered organic coatings associated to corroded underlying metal substrates, leading to the necessary removal of both these degradation features by CRs. Therefore, innovative greener gelled solutions were designed in order to tackle individually (i.e., selective action) or simultaneously (i.e., controlled double-action) corrosion and altered organic coatings possibly present on historical metal collections. Great attention was addressed to the selection of possibly renewable and bio-degradable gel “building-blocks”. The research led to a first investigation of several bio-polymers, among which poly-3-hydroxybutyrate (PHB) was selected as suitable thickening agent to design doubleaction cleaning systems. Namely, two organogels were developed using a poly-3-hydroxybutyrate matrix, loaded with ethyl lactate and complexing agents for the removal of organic coatings and corrosion, respectively. Specifically, the potential of biodegradable complexing agents, such as deferoxamine B (DFO)
and ethylenediamine-N,N′-disuccinic acid (EDDS), were explored. The cleaning targets were selected being the most representative of alloys and organic coatings present in indoor historical metal collections.
Therefore, steel, brass, and sterling silver were chosen as metal substrates, whereas an acrylic resin (i.e., Paraloid® B72) and a nitrocellulose lacquer (i.e., Zaponlack) were the organic coatings of interest. A multi-modal analytical protocol was performed on gelled formulations and metal samples before and after cleaning intervention in order to evaluate the efficiency and reliability of the innovative cleaning methods. In general terms, both cleaning systems provided an effective removal of the organic materials while yielding moderate cleaning on the corrosion layers. This outcome would ensure a versatile intervention, fine-tuning gel application time and reiteration, which is a sought feature for the controlled cleaning of historical metal collections.
From an audacious perspective, the results obtained within the doctoral research were shared with conservator-restorers and the scientific community aiming to promote the exploitation of the innovative methods and materials, while fostering the interest in researching for more sustainable approaches of production (e.g., EDDS manufactured without the use of ethylene bromide) at the industrial scale.
Le problème central de la préservation des métaux réside dans le processus spontané et irréversible de corrosion vers lequel ils tendent naturellement. C'est pourquoi les conservateurs-restaurateurs (CRs) s'appuient normalement sur l'application de revêtements organiques pour protéger la surface métallique des agents atmosphériques (par exemple, l'eau, les espèces de sulfure gazeux). Toutefois, ces matériaux ont également tendance à se détériorer avec le temps sous l'effet de plusieurs facteurs environnementaux (température, lumière UV, etc.), ce qui entraîne une défaillance de ces systèmes de protection. Par conséquence, il est commun que l'apparence, la fonctionnalité ou les conditions de conservation des oeuvres d'art métalliques soient compromises par la présence de revêtements organiques altérés associés à des substrats métalliques sous-jacents corrodés, ce qui conduit à l'élimination nécessaire de ces deux caractéristiques de dégradation par les CRs.
Des solutions gélifiées vertes et innovantes ont donc été conçues pour traiter individuellement (action sélective) ou simultanément (double action contrôlée) la corrosion et les revêtements organiques altérés éventuellement présents sur les collections historiques en métal. Une grande attention a été accordée à la sélection des " composant-blocs " potentiellement renouvelables et biodégradables des gels. La recherche a conduit à une première étude de plusieurs bio-polymères, parmi lesquels le poly-3-hydroxybutyrate (PHB) a été sélectionné comme agent épaississant approprié pour concevoir des systèmes de nettoyage à double action. Deux organogels ont été développés à partir d'une matrice de poly-3-hydroxybutyrate, chargée de lactate d'éthyle et d'agents complexants pour l'élimination des revêtements organiques et de la corrosion, respectivement. Plus précisément, les potentialités des agents complexants biodégradables, tels que la déféroxamine B (DFO) et l'acide éthylènediamine-N,N′-disuccinique (EDDS), ont été explorées. Les cibles de nettoyage ont été sélectionnées comme étant les plus représentatives des alliages et revêtements organiques présents dans les collections historiques de métaux à l'intérieur. L'acier, le laiton et l'argent sterling ont donc été choisis comme substrats métalliques, tandis qu'une résine acrylique (Paraloid® B72) et une laque nitrocellulosique (Zaponlack) ont été les revêtements organiques étudiés.
Un protocole analytique multimodal a été réalisé sur les formulations gélifiées et les échantillons métalliques avant et après l'intervention de nettoyage afin d'évaluer l'efficacité et la fiabilité des méthodes de nettoyage. Globalement, les deux systèmes ont permis d'éliminer efficacement les matériaux organiques tout en assurant un nettoyage modéré de la corrosion. Ce résultat garantirait une intervention polyvalente, en ajustant le temps d'application des gels et la réitération, ce qui est une caractéristique recherchée pour le nettoyage contrôlé des collections historiques de métaux.
Dans une perspective audacieuse, les résultats obtenus ont été partagés avec les conservateurs-restaurateurs et la communauté scientifique afin de promouvoir l'exploitation des méthodes et matériaux innovants, tout en encourageant l'intérêt pour la recherche d'approches de production plus durables (par exemple, EDDS fabriqué sans utilisation de bromure d'éthylène) à l'échelle industrielle.
ABSTRACT
The advent of the Green Chemistry principles is nowadays an unconditional driving force for the research carried out in the field of Conservation Science. Great attention is currently addressed in response to the potential risks derived from cleaning methods conventionally employed in art conservation, which are frequently relying on the use of petroleum-based and toxic substances, such as solvents and complexing agents. Within this scenario, the doctoral research here discussed was addressed to explore greener alternatives for the cleaning of altered historical metal collections. The core issue for the preservation of metals lies in the spontaneous and irreversible process of corrosion towards which they naturally tend over time. Therefore, conservator-restorers (CRs) typically rely on the application of organic coatings to protect the metallic surface from atmospheric agents (e.g., water, gaseous sulphide species). However, also these materials tend to deteriorate through time due to several environmental factors (e.g., temperature, UV light), leading to a failure of these protective systems.
Consequently, it is common that the appearance, functionality, or conservation conditions of metal artworks are jeopardised by the presence of altered organic coatings associated to corroded underlying metal substrates, leading to the necessary removal of both these degradation features by CRs. Therefore, innovative greener gelled solutions were designed in order to tackle individually (i.e., selective action) or simultaneously (i.e., controlled double-action) corrosion and altered organic coatings possibly present on historical metal collections. Great attention was addressed to the selection of possibly renewable and bio-degradable gel “building-blocks”. The research led to a first investigation of several bio-polymers, among which poly-3-hydroxybutyrate (PHB) was selected as suitable thickening agent to design doubleaction cleaning systems. Namely, two organogels were developed using a poly-3-hydroxybutyrate matrix, loaded with ethyl lactate and complexing agents for the removal of organic coatings and corrosion, respectively. Specifically, the potential of biodegradable complexing agents, such as deferoxamine B (DFO)
and ethylenediamine-N,N′-disuccinic acid (EDDS), were explored. The cleaning targets were selected being the most representative of alloys and organic coatings present in indoor historical metal collections.
Therefore, steel, brass, and sterling silver were chosen as metal substrates, whereas an acrylic resin (i.e., Paraloid® B72) and a nitrocellulose lacquer (i.e., Zaponlack) were the organic coatings of interest. A multi-modal analytical protocol was performed on gelled formulations and metal samples before and after cleaning intervention in order to evaluate the efficiency and reliability of the innovative cleaning methods. In general terms, both cleaning systems provided an effective removal of the organic materials while yielding moderate cleaning on the corrosion layers. This outcome would ensure a versatile intervention, fine-tuning gel application time and reiteration, which is a sought feature for the controlled cleaning of historical metal collections.
From an audacious perspective, the results obtained within the doctoral research were shared with conservator-restorers and the scientific community aiming to promote the exploitation of the innovative methods and materials, while fostering the interest in researching for more sustainable approaches of production (e.g., EDDS manufactured without the use of ethylene bromide) at the industrial scale.
Notes
Jury members:
Prof. Edith Joseph, thesis director, Université de Neuchâtel & Haute Ecole Arc, Switzerland
Prof. Stephan von Reuss, thesis co-director, Université de Neuchâtel, Switzerland
Prof. Giorgia Sciutto, thesis co-supervisor, Università di Bologna, Italy
Prof. Giuseppe Lazzara, Università di Palermo, Italy
Dr. David Thickett, English Heritage, United Kingdom
Defended on February 1, 2024
No de thèse : 3105
Prof. Edith Joseph, thesis director, Université de Neuchâtel & Haute Ecole Arc, Switzerland
Prof. Stephan von Reuss, thesis co-director, Université de Neuchâtel, Switzerland
Prof. Giorgia Sciutto, thesis co-supervisor, Università di Bologna, Italy
Prof. Giuseppe Lazzara, Università di Palermo, Italy
Dr. David Thickett, English Heritage, United Kingdom
Defended on February 1, 2024
No de thèse : 3105
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger