Options
Quasi-Systematic Sampling From a Continuous Population
Date de parution
2017
In
Computational Statistics and Data Analysis
No
105
De la page
11
A la page
23
Revu par les pairs
1
Résumé
A specific family of point processes are introduced that allow to select samples for the purpose of estimating the mean or the integral of a function of a real variable. These processes, called quasi-systematic processes, depend on a tuning parameter $r>0$ that permits to control the likeliness of jointly selecting neighbor units in a same sample. When $r$ is large, units that are close tend to not be selected together and samples are well spread. When $r$ tends to infinity, the sampling design is close to systematic sampling. For all $r > 0$, the first and second-order unit inclusion densities are positive, allowing for unbiased estimators of variance.
Algorithms to generate these sampling processes for any positive real value of $r$ are presented. When $r$ is large, the estimator of variance is unstable. It follows that $r$ must be chosen by the practitioner as a trade-off between an accurate estimation of the target parameter and an accurate estimation of the variance of the parameter estimator. The method's advantages are illustrated with a set of simulations.
Algorithms to generate these sampling processes for any positive real value of $r$ are presented. When $r$ is large, the estimator of variance is unstable. It follows that $r$ must be chosen by the practitioner as a trade-off between an accurate estimation of the target parameter and an accurate estimation of the variance of the parameter estimator. The method's advantages are illustrated with a set of simulations.
Identifiants
Autre version
https://arxiv.org/abs/1607.04993
Type de publication
journal article