Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Lattices in semi-simple Lie groups and multipliers of group C*-algebras
 
  • Details
Options
Vignette d'image

Lattices in semi-simple Lie groups and multipliers of group C*-algebras

Auteur(s)
Bekka, Bachir
Valette, Alain 
Institut de mathématiques 
Date de parution
1995
De la page
67
A la page
92
Mots-clés
  • 1ST BETTI NUMBER
  • REPRESENTATIONS
  • DISCRETE
  • MANIFOLD
  • DUALS
  • 1ST BETTI NUMBER

  • REPRESENTATIONS

  • DISCRETE

  • MANIFOLD

  • DUALS

Résumé
Let Gamma be a lattice in a non-compact simple Lie group G. We prove that the canonical map from the full C*-algebra C*(Gamma) to the multiplier algebra M(C*(G)) is not injective in general (it is never injective if G has Kazhdan's property (T), and not injective for many lattices either in SO(n, 1) or SU(n, 1)). For a locally compact group G, Fell introduced a property (WF3), stating that for any closed subgroup H of G, the canonical map from C*(H) to M(C*(G)) is injective. We prove that, for an almost connected G, property (WF3) is equivalent to amenability.
Nom de l'événement
Asterisque
Identifiants
https://libra.unine.ch/handle/123456789/13832
Type de publication
conference paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00