Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. An application of Ramanujan graphs to C*-algebra tensor products
 
  • Details
Options
Vignette d'image

An application of Ramanujan graphs to C*-algebra tensor products

Auteur(s)
Valette, Alain 
Institut de mathématiques 
Maison d'édition
: Elsevier Science Bv
Date de parution
1995
De la page
597
A la page
603
Résumé
In a remarkable recent paper, Junge and Pisier (1995) prove that there are several distinct C*-norms on the tensor product B(H) x B(H), where B(H) is the C*-algebra of bounded linear operators on the usual Hilbert space H. To give a quantitative version of this result, they introduce the function lambda(n) = sup{\\u\\(max)/\\u\\(min): u a tensor with rank at most n in B(H) x B(H)}, and prove cn(1/8) less than or equal to lambda(n) less than or equal to n(1/2) for n > 2. In this note, we use Ramanujan graphs to get 1/2n(1/2) < lambda(n) for any n = q + 1, q a prime power. From this we deduce lim inf/pi-->infinity lambda(n)/root n greater than or equal to 1/2 root 3.
Nom de l'événement
15th British Combinatorial Conference
Lieu
Stirling, Scotland
Identifiants
https://libra.unine.ch/handle/123456789/13850
Type de publication
conference paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00