Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Discretizing a compound distribution with application to categorical modelling
 
  • Details
Options
Vignette d'image

Discretizing a compound distribution with application to categorical modelling

Auteur(s)
Graf, Monique 
Institut de statistique 
Nedyalkova, Desislava 
Institut de statistique 
Date de parution
2017-2-17
In
Statistics
Vol.
3
No
51
De la page
685
A la page
710
Revu par les pairs
1
Mots-clés
  • KEYWORDS GB2 distribution
  • mixture distribution
  • maximum pseudo-likelihood estimation
  • sandwich variance estimator
  • income distribution
  • inequality and poverty indicators
  • EU-SILC survey
  • KEYWORDS GB2 distribu...

  • mixture distribution

  • maximum pseudo-likeli...

  • sandwich variance est...

  • income distribution

  • inequality and povert...

  • EU-SILC survey

Résumé
Many probability distributions can be represented as compound distributions. Consider some parameter vector as random. The compound distribution is the expected distribution of the variable of interest given the random parameters. Our idea is to define a partition of the domain of definition of the random parameters, so that we can represent the expected density of the variable of interest as a finite mixture of conditional densities. We then model the mixture probabilities of the conditional densities using information on population categories, thus modifying the original overall model. We thus obtain specific models for sub-populations that stem
from the overall model. The distribution of a sub-population of interest is thus completely specified in terms of mixing probabilities. All characteristics of interest can be derived from this distribution and the comparison between sub-populations easily proceeds from the comparison of the mixing probabilities. A real example based on EU-SILC data is given. Then the methodology is investigated through simulation.
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/25825
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00