Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Automatic Parameter Tuning of Multiple-Point Statistical Simulations for Lateritic Bauxite Deposits
 
  • Details
Options
Vignette d'image

Automatic Parameter Tuning of Multiple-Point Statistical Simulations for Lateritic Bauxite Deposits

Auteur(s)
Yasin Dagasan
Renard, Philippe 
Centre d'hydrogĂ©ologie et de gĂ©othermie 
Straubhaar, Julien 
Centre d'hydrogĂ©ologie et de gĂ©othermie 
Oktay Erten
Erkan Topal
Date de parution
2018
In
Minerals
Vol.
8
No
5
De la page
220
Mots-clés
  • multiple-point statistics
  • MPS
  • direct sampling
  • parameter selection
  • pseudo-histogram
  • simulated annealing
  • laterite
  • bauxite mining
  • simulations
  • pattern statistics
  • multiple-point statis...

  • MPS

  • direct sampling

  • parameter selection

  • pseudo-histogram

  • simulated annealing

  • laterite

  • bauxite mining

  • simulations

  • pattern statistics

Résumé
<jats:p>The application of multiple-point statistics (MPS) in the mining industry is not yet widespread and there are very few applications so far. In this paper, we focus on the problem of algorithmic input parameter selection, which is required to perform MPS simulations. The usual approach for selecting the parameters is to conduct a manual sensitivity analysis by testing a set of parameters and evaluating the resulting simulation qualities. However, carrying out such a sensitivity analysis may require significant time and effort. The purpose of this paper is to propose a novel approach to automate the parameter tuning process. The primary criterion used to select the parameters is the reproduction of the conditioning data patterns in the simulated image. The parameters of the MPS algorithm are obtained by iteratively optimising an objective function with simulated annealing. The objective function quantifies the dissimilarity between the pattern statistics of the conditioning data and the simulation image in two steps: the pattern statistics are first obtained using a smooth histogram method; then, the difference between the histograms is evaluated by computing the Jensen–Shanon divergence. The proposed approach is applied for the simulation of the geological interface (footwall contact) within a laterite-type bauxite mine deposit using the Direct Sampling MPS algorithm. The results point out two main advantages: (1) a faster parameter tuning process and (2) more objective determination of the parameters.</jats:p>
Identifiants
https://libra.unine.ch/handle/123456789/32974
_
10.3390/min8050220
Type de publication
journal article
Dossier(s) à télécharger
 main article: minerals-08-00220.pdf (796.74 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00