Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Isometric group actions on banach spaces and representations vanishing at infinity
 
  • Details
Options
Vignette d'image

Isometric group actions on banach spaces and representations vanishing at infinity

Auteur(s)
De Cornulier, Yvan
Tessera, Romain
Valette, Alain 
Institut de mathématiques 
Date de parution
2008
In
Transformation Groups
Vol.
1
No
13
De la page
125
A la page
147
Mots-clés
  • affine isometries
  • isometric representations
  • 1-cohomology
  • vanishing
  • of coefficients
  • GROUP COHOMOLOGY
  • PROPERTY T
  • RIGIDITY
  • affine isometries

  • isometric representat...

  • 1-cohomology

  • vanishing

  • of coefficients

  • GROUP COHOMOLOGY

  • PROPERTY T

  • RIGIDITY

Résumé
Our main result is that the simple Lie group G = Sp( n; 1) acts metrically properly isometrically on L-p( G) if p > 4 n + 2. To prove this, we introduce Property (BP0V), with V being a Banach space: a locally compact group G has Property (BP0V) if every affine isometric action of G on V, such that the linear part is a C-0- representation of G, either has a fixed point or is metrically proper. We prove that solvable groups, connected Lie groups, and linear algebraic groups over a local field of characteristic zero, have Property ( BP V 0). As a consequence, for unitary representations, we characterize those groups in the latter classes for which the first cohomology with respect to the left regular representation on L-2(G) is nonzero; and we characterize uniform lattices in those groups for which the first L-2- Betti number is nonzero.
Identifiants
https://libra.unine.ch/handle/123456789/13888
_
10.1007/s00031-008-9006-0
Type de publication
journal article
Dossier(s) à télécharger
 main article: s00031-008-9006-0.pdf (449.04 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00