Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Equivariant and non-equivariant uniform embeddings into products and Hilbert spaces
 
  • Details
Options
Vignette d'image

Equivariant and non-equivariant uniform embeddings into products and Hilbert spaces

Auteur(s)
Dreesen, Dennis
Editeur(s)
Valette, Alain 
Institut de mathématiques 
Date de parution
2011
Mots-clés
  • Bass-Serre theory
  • Behaviour of compression under group constructions
  • Bieberbach groups
  • Bieberbach theorems
  • crystallographic groups
  • equivariant Hilbert space compression
  • fiber-wise volume non-increasing maps
  • Haagerup Property
  • Hilbert space compression
  • Lp-compression
  • splitting of isometries
  • Talleli conjecture
  • uniform embeddability
  • property (A)
  • Bass-Serre theory

  • Behaviour of compress...

  • Bieberbach groups

  • Bieberbach theorems

  • crystallographic grou...

  • equivariant Hilbert s...

  • fiber-wise volume non...

  • Haagerup Property

  • Hilbert space compres...

  • Lp-compression

  • splitting of isometri...

  • Talleli conjecture

  • uniform embeddability...

  • property (A)

Résumé
A crystallographic group is a group that acts faithfully, isometrically and properly discontinuously on a Euclidean space R<sup>n</sup> and the theory of crystallographic groups is in some sense governed by three main theorems, called the Bieberbach theorems. The research performed in this thesis is motivated from a desire to generalize these theorems to a more general setting. First, instead of actions on R<sup>n</sup>, we consider actions on products <i>M</i> x <i>N</i> where <i>N</i> is a simply connected, connected nilpotent Lie-group equipped with a left-invariant Riemannian metric and where <i>M</i> is a closed Riemannian manifold. Our proof to generalize the first Bieberbach theorem to this setting, needs that the isometries of <i>M</i> x <i>N</i> split, i.e that Iso(<i>M</i> x <i>N</i>) = Iso(<i>M</i>) x Iso(<i>N</i>). In Part I of this thesis, we introduce a class of products on which the isometries split. <br> Consequently, going back to the Bierbach context, we can replace Euclidean space R<sup>n</sup> by the class of all, possibly infinite-dimensional, Hilbert spaces. We here enter the world of groups with the Haagerup property. Quantifying the degree to which a group satisfies the Haagerup property leads to the notion of equivariant Hilbert space compression, and we investigate the behaviour of this number under group constructions in Part II. <br> Finally, dropping the condition that groups under consideration must act isometrically on a Hilbert space, we look, in part III, at mere (uniform) embeddings of groups into Hilbert spaces. Quantifying the degree to which a group embeds uniformly into a Hilbert space, leads to the notion of (ordinary) Hilbert space compression and in Part III, the behaviour of this number under group constructions is investigated.
Notes
Thèse de doctorat : Université de Neuchâtel, 2011 ; 2191
Identifiants
https://libra.unine.ch/handle/123456789/11997
_
10.35662/unine-thesis-2191
Type de publication
doctoral thesis
Dossier(s) à télécharger
 main article: Dreesen_Dennis_-_Equivariant_and_non-equivariant_uniform_embeddings_THESE_2191_2011.pdf (1.71 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00