Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. nse: Computation of numerical standard errors in R
 
  • Details
Options
Vignette d'image

nse: Computation of numerical standard errors in R

Auteur(s)
Ardia, David 
Institut d'analyse financière 
Bluteau, Keven 
Institut d'analyse financière 
Date de parution
2017-2
In
Journal of Open Source Software
Vol.
2
No
10
De la page
1
A la page
1
Revu par les pairs
1
Mots-clés
  • Bootstrap
  • GARCH
  • HAC kernel
  • numerical standard error (NSE)
  • spectral density
  • Bootstrap

  • GARCH

  • HAC kernel

  • numerical standard er...

  • spectral density

Résumé
nse is an R package (R Core Team (2016)) for computing the numerical standard error (NSE), an estimate of the standard deviation of a simulation result if the simulation experiment were to be repeated many times. The package provides a set of wrappers around several R packages, which give access to more than thirty estimators, including batch means estimators (Geyer (1992 Section 3.2)), initial sequence estimators (Geyer (1992 Equation 3.3)), spectrum at zero estimators (Heidelberger and Welch (1981),Flegal and Jones (2010)), heteroskedasticity and autocorrelation consistent (HAC) kernel estimators (Newey and West (1987),Andrews (1991),Andrews and Monahan (1992),Newey and West (1994),Hirukawa (2010)), and bootstrap estimators Politis and Romano (1992),Politis and Romano (1994),Politis and White (2004)).
Identifiants
https://libra.unine.ch/handle/123456789/25363
_
10.21105/joss.00172
Type de publication
journal article
Dossier(s) à télécharger
 main article: joss.00172.pdf (119.32 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00