Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Adaptive mixture of Student-t distributions as a flexible distribution for efficient simulation: The R package AdMit
 
  • Details
Options
Vignette d'image

Adaptive mixture of Student-t distributions as a flexible distribution for efficient simulation: The R package AdMit

Auteur(s)
Ardia, David 
Institut d'analyse financière 
Hoogerheide, Lennart
Van Dijk, Herman
Date de parution
2009
In
Journal of Statistical Software
Vol.
3
No
29
De la page
1
A la page
32
Revu par les pairs
1
Mots-clés
  • Adaptive mixture
  • Student-t distributions
  • importance sampling
  • independence chain Metropolis-Hasting algorithm
  • Bayesian
  • R software
  • Adaptive mixture

  • Student-t distributio...

  • importance sampling

  • independence chain Me...

  • Bayesian

  • R software

Résumé
This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.
Lié au projet
Bayesian estimation of regime-switching GARCH models 
Identifiants
https://libra.unine.ch/handle/123456789/24514
Autre version
https://www.jstatsoft.org/article/view/v029i03
Type de publication
journal article
Dossier(s) à télécharger
 WP_DQE_09.pdf (1.31 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00