Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Bayesian estimation of a Markov-switching threshold GARCH model with Student-t innovations
 
  • Details
Options
Vignette d'image

Bayesian estimation of a Markov-switching threshold GARCH model with Student-t innovations

Auteur(s)
Ardia, David 
Institut d'analyse financière 
Date de parution
2009
In
Econometrics Journal
Vol.
1
No
12
De la page
105
A la page
126
Revu par les pairs
1
Mots-clés
  • Asymmetry

  • Bayesian

  • GARCH

  • Markov-switching

  • SMI

  • Threshold

Résumé
A Bayesian estimation of a regime-switching threshold asymmetric GARCH model is proposed. The specification is based on a Markov-switching model with Student-t innovations and K separate GJR(1,1) processes whose asymmetries are located at free non-positive threshold parameters. The model aims at determining whether or not: (i) structural breaks are present within the volatility dynamics; (ii) asymmetries (leverage effects) are present, and are different between regimes and (iii) the threshold parameters (locations of bad news) are similar between regimes. A novel MCMC scheme is proposed which allows for a fully automatic Bayesian estimation of the model. The presence of two distinct volatility regimes is shown in an empirical application to the Swiss Market Index log-returns. The posterior results indicate no differences with regards to the asymmetries and their thresholds when comparing highly volatile periods with the milder ones. Comparisons with a single-regime specification indicates a better in-sample fit and a better forecasting performance for the Markov-switching model.
Lié au projet
Bayesian estimation of regime-switching GARCH models 
URI
https://libra.unine.ch/handle/123456789/24515
DOI
10.1111/j.1368-423X.2008.00253.x/abstract
Autre version
http://onlinelibrary.wiley.com/doi/10.1111/j.1368-423X.2008.00253.x/abstract
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final