Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Infection dynamics in frog populations with different histories of decline caused by a deadly disease
 
  • Details
Options
Vignette d'image

Infection dynamics in frog populations with different histories of decline caused by a deadly disease

Auteur(s)
Sapsford, Sarah J.
Voordouw, Maarten 
Institut de biologie 
Alford, Ross A.
Schwarzkopf, Lin
Date de parution
2015-12
In
Oecologia
Vol.
4
No
179
De la page
1099
A la page
1110
Mots-clés
  • Coexistence
  • Disease dynamics
  • Fungus
  • Host-pathogen interactions
  • Infectious disease
  • Coexistence

  • Disease dynamics

  • Fungus

  • Host-pathogen interac...

  • Infectious disease

Résumé
Pathogens can drive host population dynamics. Chytridiomycosis is a fungal disease of amphibians that is caused by the fungus Batrachochytrium dendrobatidis (Bd). This pathogen has caused declines and extinctions in some host species whereas other host species coexist with Bd without suffering declines. In the early 1990s, Bd extirpated populations of the endangered common mistfrog, Litoria rheocola, at high-elevation sites, while populations of the species persisted at low-elevation sites. Today, populations have reappeared at many high-elevation sites where they presently co-exist with the fungus. We conducted a capture-mark-recapture (CMR) study of six populations of L. rheocola over 1 year, at high and low elevations. We used multistate CMR models to determine which factors (Bd infection status, site type, and season) influenced rates of frog survival, recapture, infection, and recovery from infection. We observed Bd-induced mortality of individual frogs, but did not find any significant effect of Bd infection on the survival rate of L. rheocola at the population level. Survival and recapture rates depended on site type and season. Infection rate was highest in winter when temperatures were favourable for pathogen growth, and differed among site types. The recovery rate was high (75.7-85.8 %) across seasons, and did not differ among site types. The coexistence of L. rheocola with Bd suggests that (1) frog populations are becoming resistant to the fungus, (2) Bd may have evolved lower virulence, or (3) current environmental conditions may be inhibiting outbreaks of the fatal disease.
Identifiants
https://libra.unine.ch/handle/123456789/25193
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00