Options
Semantics for Analytic Containment
Auteur(s)
Date de parution
2004
In
Studia Logica, Springer, 2004/77/1/87-104
Résumé
In 1977, R. B. Angell presented a logic for analytic containment, a notion of “relevant” implication stronger than Anderson and Belnap's entailment. In this paper I provide for the first time the logic of first degree analytic containment, as presented in [2] and [3], with a semantical characterization—leaving higher degree systems for future investigations. The semantical framework I introduce for this purpose involves a special sort of truth-predicates, which apply to pairs of collections of formulas instead of individual formulas, and which behave in some respects like Gentzen's sequents. This semantics captures very general properties of the truth-functional connectives, and for that reason it may be used to model a vast range of logics. I briefly illustrate the point with classical consequence and Anderson and Belnap's “tautological entailments”.
Autre version
http://dx.doi.org/10.1023/B:STUD.0000034187.37935.24
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger