Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Laboratory and field trials reveal the potential of a gel formulation of entomopathogenic nematodes for the biological control of fall armyworm caterpillars (Spodoptera frugiperda)
    (2022-12-1) ;
    Bazagwira, Didace
    ;
    Guenat, Julie Morgane
    ;
    ;
    Karangwa, Patrick
    ;
    Mukundwa, Ishimwe Primitive
    ;
    Kajuga, Joellee
    ;
    ;
    Toepfer, Stefan
    ;
    The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) can cause tremendous yield losses in maize. Its invasion into Africa and Asia has dramatically increased the use of insecticides in maize agro-ecosystems. Safe, effective and readily available alternatives are urgently needed. Entomopathogenic nematodes (EPN) represent a promising and sustainable option to control fall armyworm caterpillars on maize. Commonly used against soil insect pests, EPN can also be applied to control above-ground pests if formulated appropriately. We explored the possibility to control FAW by incorporating the EPN species Steinernema carpocapsae into protective formulations that can be easily applied into the whorl of maize plants, where the caterpillars mostly feed. We tested this approach in laboratory cage experiments as well as in field trials. In the laboratory, treating maize plants with a low dose of S. carpocapsae (3000 infective juveniles per plant) formulated in a carboxymethyl cellulose (CMC) gel caused 100% mortality of FAW caterpillars and substantially reduced plant damage, whereas EPN applied in water or a surfactant-polymer-formulation (SPF) caused 72% and 94% mortality, respectively. Under field conditions, one-time treatments with S. carpocapsae applied in water, SPF or CMC decreased plant damage, but only the EPN-gel formulation significantly reduced FAW infestation. As compared to control, about 40% fewer caterpillars were found on plants treated with EPN formulated in the gel. Notably, the EPN-gel formulation was as effective as a standard dose of cypermethrin, a pyrethroid insecticide commonly used against FAW, in reducing FAW infestation. Repeated applications may be needed to reduce re-infestations by FAW across a whole cropping season depending on the local maize phenology and pest dynamics. These findings demonstrate that EPN, when properly formulated, are excellent candidates for the biological control of FAW, and can be a safe and sustainable alternative to synthetic insecticides.
  • Publication
    Accès libre
    Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to Be Used against Invasive Fall Armyworm, Spodoptera frugiperda
    (2022-2-16) ;
    De Gianni, Lara
    ;
    Machado, Ricardo A. R.
    ;
    ;
    Bernal, Julio S.
    ;
    Karangwa, Patrick
    ;
    Kajuga, Joelle
    ;
    Waweru, Bancy
    ;
    Bazagwira, Didace
    ;
    ;
    Toepfer, Stefan
    ;
    The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.