Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Habitat partitioning of denitrifying bacterial communities carrying nirS or nirK genes in the stratified water column of Lake Kinneret, Israel
    ;
    Kim, Ok-Sun
    ;
    Witzel, Karl-Paul
    ;
    Imhoff, Johannes F
    ;
    Hadas, Ora
    The community composition of denitrifying bacteria was studied in the stratified water column of Lake Kinneret. The nitrite reductase genes nirS and nirK were amplified by PCR from water samples taken at 1, 14, 19 and 22 m depth, which represent the epi-, meta- and hypolimnion of the lake. The PCR products were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and clone libraries. The highest diversity of nirS denitrifying communities was observed at 1 m depth. According to the T-RFLP profiles and clone libraries of nirS products, 2 groups of denitrifiers were common to and dominant in all depths. Deduced protein sequences from one of these groups displayed low identity (77%) with other nirS sequences reported in GenBank. Denitrifying bacterial communities with nirK were most diverse at 22 m and showed highest similarity to those at 19 m depth. Sequences unrelated to nirK dominated the clone libraries from 1 m depth, suggesting that denitrifying bacteria with copper-containing nitrite reductase were less frequent at this depth. The results suggest that microorganisms with nirK and those with nirS respond differently to the environmental conditions in the stratified water column of Lake Kinneret.
  • Publication
    Accès libre
    Effect of salinity on cyanobacterial community composition along a transect from Fuliya spring into the water of Lake Kinneret, Israel
    ;
    Kim, Ok-Sun
    ;
    Imhoff, Johannes F
    ;
    Witzel, Karl-Paul
    ;
    Hadas, Ora
    Cyanobacterial community composition was studied along a salinity gradient from the saline Spring Fuliya towards the water column of Lake Kinneret. The samples included a gradient of salinities ranging from 4270 mg Cl L–1 (Saline Spring) to 239 mg Cl L–1 (Lake Kinneret). Denaturing gradient gel electrophoresis (DGGE) and cloning of the 16 S rRNA gene, as well as cloning and sequencing of the psbA gene, were used to characterize cyanobacterial community composition. Despite the differences in salinity, similar cyanobacterial communities were observed in the lake and the saline spring, the only exception being the highest salinity sample (4270 mg Cl L–1). Both, DGGE patterns and results of the clone libraries revealed the dominance of cyanobacteria with colonial Gloeocapsa and unicellular Synechococcus as the closest known cultured relatives, independently of the salinity. These results suggest that cyanobacterial populations inhabiting this freshwater lake and its saline sources can adapt to a wide range of salinities.