Options
Junier, Pilar
Nom
Junier, Pilar
Affiliation principale
Fonction
Professeure assistante
Email
pilar.junier@unine.ch
Identifiants
Résultat de la recherche
2 Résultats
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreComparative analysis of ammonia monooxygenase (amoA) genes in the water column and sediment–water interface of two lakes and the Baltic Sea(2008)
;Ok-Sun, Kim; ;Imhoff, Johannes FWitzel, Karl-PaulThe functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment–water interface of the two freshwater lakes Plußsee and Schöhsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequences was only distantly related to any of the cultured AOB and is considered to represent new clusters of AOB within the Nitrosomonas/Nitrosospira group. Almost all sequences from the water column of the Baltic Sea and from 1-m depth of Schöhsee were related to different Nitrosospira clusters 0 and 2, respectively. The majority of sequences from Plußsee and Schöhsee were associated with sequences from Chesapeake Bay, from a previous study of Plußsee and from rice roots in Nitrosospira -like cluster A, which lacks sequences from Baltic Sea. Two groups of sequences from Baltic Sea sediment were related to clonal sequences from other brackish/marine habitats in the purely environmental Nitrosospira-like cluster B and the Nitrosomonas-like cluster. This confirms previous results from 16S rRNA gene libraries that indicated the existence of hitherto uncultivated AOB in lake and Baltic Sea samples, and showed a differential distribution of AOB along the water column and sediment of these environments. - PublicationAccès libreMethane- and ammonia-oxidizing bacteria at the chemocline of Lake Kinneret (Israel)
; ;Kim, Ok-Sun ;Eckert, Werner ;Casper, Peter ;Imhoff, Johannes F ;Witzel, Karl-PaulHadas, OraThe vertical distribution of methane- and ammonia-oxidizing bacteria (MOB and AOB, respectively), and the physicochemical conditions in the chemocline of Lake Kinneret (Israel) were studied at a resolution of 10 cm from 16.2 to 17.7 m depth. Profiles of the chemical parameters indicated decreasing concentrations of methane (from 22.4 to 0.11 μmol l–1) and ammonia (from 14.2 to 8.4 μmol l–1) towards the water surface and in close proximity to the chemocline. The disappearance of methane coincided with methane oxidation that could be corroborated throughout this layer with highest rates at 17.4 to 17.6 m. Disappearance of ammonia could not be linked to ammonia oxidation exclusively. The genes pmoA and the homologous amoA (coding for subunit α of the methane and ammonia monooxygenase, respectively) were amplified by PCR. The products were analyzed by terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries. The results demonstrated that different MOB and AOB communities are established along the concentration gradient within the narrow layer of the metalimnetic chemocline. Changes in the intensity of the T-RFLP peaks and the frequency of different groups of alpha- and gammaproteobacterial MOB, and betaproteobacterial AOB, coincided with the concentration gradients of methane, ammonia, nitrate, and oxygen in the chemocline. This suggests that different communities of MOB, and to a lesser extent AOB, contribute to the formation of chemical gradients of their particular substrates in the chemocline.