Options
Pillonel, Amandine
Nom
Pillonel, Amandine
Affiliation principale
Email
amandine.pillonel@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationMétadonnées seulementHigh-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat(2016-4-21)
; ; ;Steciow, Mónica M.; ;Noelia, Paredes; ;Tomasz, OszakoOomycete diversity has been generally underestimated, despite their ecological and economic importance. Surveying unexplored natural ecosystems with up-to-date molecular diversity tools can reveal the existence of unsuspected organisms. Here, we have explored the molecular diversity of five microhabitats located in five different oligotrophic peat bogs in the Jura Mountains using a high-throughput sequencing approach (Illumina HiSeq 2500). We found a total of 34 different phylotypes distributed in all major oomycete clades, and comprising sequences affiliated to both well-known phylotypes and members of undescribed, basal clades. Parasitic species, including obligate forms were well-represented, and phylotypes related to highly damaging invasive pathogens (Aphanomyces astaci: X1100 and Saprolegnia parasitica: X1602) were retrieved. Microhabitats differed significantly in their community composition, and many phylotypes were strongly affiliated to free water habitats (pools). Our approach proved effective in screening oomycete diversity in the studied habitat, and could be applied systematically to other environments and other fungal and fungal-like groups. - PublicationAccès libreEight species in the Nebela collaris complex: Nebela gimlii (Arcellinida,Hyalospheniidae), a new species described from a Swiss raised bogWe describe here a new species of sphagnicolous testate amoeba found abundantly in the forested part of the Le Cachot peatland (Jura Mountains, Neuchâtel, Switzerland) based on microscopical observations (LM, SEM). The new species, called Nebela gimlii was placed in a phylogenetic tree based on mitochondrial cytochrome oxidase sequences (COI), and branched robustly within the N. collaris complex next to the morphologically similar N. guttata and N. tincta. It is however genetically clearly distinct from these two species, and differs morphologically from them by its smaller size and stouter shape of the shell. This new species completes the phylogeny of the Nebela collaris species complex, with now eight species described, mostly from peatlands and acidic forest litter, and further demonstrates the existence of an unknown diversity within testate amoebae. Improving the taxonomy of testate amoebae in peatlands and clarifying the ecology of newly discovered species should make these organisms even more valuable as bioindicator and for palaeoecological reconstruction.