Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Multiphase Transport of Tritium in Unsaturated Porous Media—Bare and Vegetated Soils
    (2012)
    Jiménez-Martínez, J
    ;
    Tamoh, K
    ;
    Candela, L
    ;
    Elorza, F.J
    ;
    Tritium is a short-lived radioactive isotope (T1/2 = 12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3 × 108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium reemission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process.Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.
  • Publication
    Accès libre
    Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone
    (Elsevier, 2011) ; ;
    Höhener, P.
    ;
    Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion. The equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment. The comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporisation, diffusion and biodegradation. The net effect can lead to an enrichment or depletion of the heavy isotope in the remaining organic phase, depending on the compound and element considered. Finally, the isotope evolution of molecules migrating away from the source and undergoing degradation is governed by a combined degradation and diffusion isotope effect. This suggests that, in the unsaturated zone, the interpretation of biodegradation of VOC based on isotopic data must always be based on a model combining gas phase diffusion and degradation.