Options
Lara, Enrique
Résultat de la recherche
Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing
2020-9-18, Reczuga, Monika, Seppey, Christophe Victor William, Mulot, Matthieu, Jassey, Vincent E.J., Buttler, Alexandre, Slowinska, Sandra, Slowinski, Michal, Lara, Enrique, Lamentowicz, Mariusz, Mitchell, Edward
Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world’s soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more “terrestrial” community in response to drought, in line with observed changes in the functioning of the ecosystem.
Assessing soil micro-eukaryotic diversity using high-throughput amplicons sequencing: spatial patterns from local to global scales and response to ecosystem perturbation
2017, Seppey, Christophe Victor William, Mitchell, Edward, Lara, Enrique
Les micro-eucaryotes exhibent une immense diversité qui remplit plusieurs fonctions essentielles dans les écosystèmes colonisés. Ces micro-organismes sont impliqués dans tous les niveaux trophique microbiens, interagissent entre eux ainsi qu’avec d’autre groupes d’organismes tel les procaryotes ou les macro-organismes, et influencent les cycles d’éléments comme ceux du carbone ou de l’azote. Les diversités et écologie des micro-eucaryotes sont étudiées à partir de la morphologie de ces organismes et de plus en plus avec des méthodes moléculaire devenant plus abordable que jamais. Le séquençage haut débit de fragments d’ADN donnant une information taxonomique prise directement de l’environnement est maintenant le standard pour établir les communautés microbiennes et pratiquement saturer la diversité microbienne. Cette thèse profite des avancées dans cette technique pour étudier l’écologie des microeucaryotes des sols, organismes qui représentent la base de la plupart des écosystèmes terrestre et sont impliqué dans de critique questions écologique comme les changement climatique ou l’approvisionnement alimentaire. Les cinq chapitres suivent des communautés contraintes par différent niveaux de stress ou perturbation et distribuées autant sur de petite surfaces que sur le globe. Des analyses écologique classique et innovante sont utilisées dans ce travail pour couvrir des questions à propos de bioindication, fonctions, niveaux trophique, distribution spatiale et diversité de ce groupe de micro-organismes peu connu à l’immense diversité., Micro-eukaryotes exhibit a huge diversity which fulfils many essential functions in the colonized ecosystems. These micro-organisms are involved in every level of microbial trophic networks. They interact with each other and with other biota like prokaryotes or macro-organisms, and influence element cycles like the carbon or nitrogen cycle. The diversity and ecology of micro-eukaryotes are studied based on morphological analyses and more and more with molecular methods which are increasingly affordable. High-throughput sequencing of taxonomically informative DNA fragments taken directly from the environment is now the golden standard to assess microbial communities and virtually saturate the microbial diversity. This thesis takes advantage of the advances in this technique to study the ecology of micro-eukaryotes in soils, which represent the basis of most terrestrial ecosystems and are involved in critical ecological issues like climate changes or food supply. The five chapters follow communities constrained by different levels of stress or perturbation and distributed from very limited areas to global ecosystems. Classical and innovative ecological analyses are used in this work to cover questions about the bioindication, functions, trophic networks, spacial distributions and diversity of these hyper-diverse and largely unknown micro-organisms.
High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat
2016-4-21, Singer, David, Lara, Enrique, Steciow, Mónica M., Seppey, Christophe, Noelia, Paredes, Pillonel, Amandine, Tomasz, Oszako, Belbahri, Lassaâd
Oomycete diversity has been generally underestimated, despite their ecological and economic importance. Surveying unexplored natural ecosystems with up-to-date molecular diversity tools can reveal the existence of unsuspected organisms. Here, we have explored the molecular diversity of five microhabitats located in five different oligotrophic peat bogs in the Jura Mountains using a high-throughput sequencing approach (Illumina HiSeq 2500). We found a total of 34 different phylotypes distributed in all major oomycete clades, and comprising sequences affiliated to both well-known phylotypes and members of undescribed, basal clades. Parasitic species, including obligate forms were well-represented, and phylotypes related to highly damaging invasive pathogens (Aphanomyces astaci: X1100 and Saprolegnia parasitica: X1602) were retrieved. Microhabitats differed significantly in their community composition, and many phylotypes were strongly affiliated to free water habitats (pools). Our approach proved effective in screening oomycete diversity in the studied habitat, and could be applied systematically to other environments and other fungal and fungal-like groups.
Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
2013, Kosakyan, Anush, Gomaa, Fatma, Mitchell, Edward, Heger, Thierry J., Lara, Enrique
Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
Exploration and characterization of "Amoebozoa" diversity and investigation of their diversity patterns at regional and global scales
2020, Blandenier, Quentin, Lara, Enrique, Mitchell, Edward
La diversité mondiale des eucaryotes est dominée par des organismes (principalement) unicellulaires appelés protistes. Parmi eux, les Amoebozoa sont l'un des groupes les plus abondants, diversifiés et caractéristiques du sol, jouant ainsi des rôles importants dans le fonctionnement des écosystèmes. Cependant, leur étude a été entravée par la difficulté de les détecter et le manque de traits morphologiques stables dans la plupart des groupes. Toutefois, certains amibozoaires comme les Hyalospheniformes (Arcellinida) produisent une thèque (c.-à-d. une coquille) caractéristique qui facilite leur identification, et sont donc considérées comme un groupe modèle approprié pour étudier les schémas de répartition de la diversité. Le développement récent du barcoding moléculaire a considérablement aidé pour l’identification taxonomique, tandis que le métabarcoding a permis de révéler la composition des communautés microbiennes sans biais d'observation et de culture. Ces méthodes se sont révélées efficaces pour plusieurs groupes microbiens, mais seulement quelques études ont été conçues pour les Amoebozoa et les protocoles disponibles sont encore assez rares. Les objectifs de ma thèse étaient alors 1) améliorer et développer des méthodes moléculaires pour étudier la diversité et l'écologie des amibozoaires, 2) estimer la diversité taxonomique et fonctionnelle présente dans le sol, 3) améliorer la taxonomie et phylogénie de cette diversité afin d'établir une base solide pour de futures recherches et 4) caractériser les facteurs écologiques susceptibles d'influencer la diversité microbienne à l'échelle locale, continentale et mondiale. Nous avons d'abord identifié un nouveau marqueur moléculaire pour étudier plusieurs groupes d’arcellinides, qui s'est révélé efficace pour discriminer des taxons proches et étudier simultanément les relations phylogénétiques profondes entre des taxons éloignés (chapitre 2). De plus, nous avons également adapté un protocole de métabarcoding pour étudier le genre Nebela avec des amorces COI spécifiques et une résolution taxonomique fine (chapitre 6). Ensuite, nous avons isolé, cultivé et décrit le premier membre d'un clade environnemental d’amibozoaires évolutivement très divergent (chapitre 3). Cette amibe, l'une des plus petites espèces d'amibes décrites, présente un cycle de vie unique avec une alternance de trophozoïtes actifs phagotrophes et de ramifications osmotrophes ressemblant aux champignons. Sa présence a été fréquemment reportée dans de nombreuses études de métabarcoding du sol, mais cet organisme n'avait jamais été caractérisé auparavant. En revanche, les Hyalospheniformes sont connus depuis les travaux d’Ehrenberg au XIXe siècle. Cependant, leur diversité au niveau de l’espèce reste mal caractérisée. Dans le chapitre 4, nous avons montré que l'espèce emblématique d’amibe à thèque, Nebela militaris, n'appartenait pas au genre Nebela, mais constituait une entité distincte dans l'arbre des Hyalospheniformes. Par conséquent, nous avons érigé le nouveau genre Alabasta pour cette espèce (chapitre 4). De plus, nous avons montré que la diversité des Hyalospheniformes avait été largement sous-estimée. En effet, nos résultats morphologiques et moléculaires ont révélé la présence de plusieurs espèces au sein des genres Apodera, Alocodera et Padaungiella. Cette nouvelle diversité a des impacts sur la biogéographie microbienne, car Apodera vas et Alocodera cockayni étaient auparavant considérées comme deux espèces non-cosmopolites avec des aires de répartition géographique très étendues et de grandes tolérances écologiques. Par conséquent, nous avons montré que la situation était beaucoup plus complexe, suggérant l'existence d'endémismes locaux étroits et de spécialistes écologiques, à l'instar des genres Hyalosphenia et Nebela (chapitre 5). Finalement, nous avons exploré la diversité du genre Nebela le long d’un gradient d’élévation (chapitre 6). Nous avons observé une diminution de l’abondance et de la diversité en haute altitude ce qui correspond à un effet typique de « milieu de domaine ». Notre étude a également révélé plusieurs phylotypes inconnus limités à de hautes altitudes qui semblent présenter une exclusion réciproque avec des taxons généralistes présents à des altitudes inférieures. En conclusion, cette thèse met en évidence que des méthodes moléculaires associées à des observations morphologiques robustes sont efficaces pour révéler et décrire la diversité des Amoebozoa. De plus, ces organismes microbiens possèdent des schémas biogéographiques et macro-écologiques similaires aux animaux, plantes et champignons, dès lors que ces groupes sont étudiés au même rang taxonomique, c'est-à-dire au niveau de l'espèce. ABSTRACT The world eukaryotic diversity is dominated by (mostly) single-celled organisms referred to as protists. Among them, the Amoebozoa are one of the most numerous, diverse and characteristic groups in soil, thus playing important roles in ecosystem functioning. However, their study has been impeded by the difficulty in detecting them and the lack of stable morphological traits in most groups. Nevertheless, some amoebozoans such as the Hyalospheniformes (Arcellinida) are characterized by a self-constructed test (i.e. shell) which facilitates their identification, and are then considered as a suitable model group for investigating diversity patterns of repartition. The recent development of DNA barcoding has helped considerably taxonomic identification, whereas metabarcoding has allowed revealing microbial community composition without observational and cultivation biases. These methods have proved efficient for several microbial groups, but only few studies have been designed for Amoebozoa and available protocols are still rather scarce. The aims of my thesis were then to 1) improve and develop molecular methods to study the amoebozoan diversity and ecology, 2) estimate their taxonomic and functional diversity in the soil, 3) improve the taxonomic and phylogenetic frame for this diversity in order to build a sound basis for further research and 4) characterize the ecological drivers which are likely to influence microbial diversity at local, continental and global scales. We first identified a new molecular marker to survey arcellinids taxa, which proved to be efficient for discriminating closely-related taxa and simultaneously investigating deep relationships among distant taxa (Chapter 2). In addition, we also adapted a metabarcoding protocol with specific COI primers to survey the diversity within the genus Nebela at a fine taxonomical resolution (Chapter 6). Then, we isolated, cultivated and described the first member of a deep-branching environmental clade of Amoebozoa (Chapter 3). This amoeba, one of the smallest amoeboid species described, presents a unique life cycle with an alternation of phagotrophic active trophozoites and osmotrophic fungi-like ramifications. Its presence has been pervasively reported in many soil metabarcoding studies, but this organism had never been characterized. By contrast, Hyalospheniformes are known since the works of Ehrenberg in the 19th century. However, their diversity at the species level remains poorly characterized. In chapter 4, we showed that the iconic testate amoeba species Nebela militaris did not belong to genus Nebela but branched as a separate entity in the Hyalospheniformes tree. Therefore, we erected the new genus Alabasta for this species (Chapter 4). In addition, we demonstrated that Hyalospheniformes diversity had been greatly underestimated. Indeed, our morphological and molecular results have revealed the presence for several species within the genera Apodera, Alocodera and Padaungiella. This new diversity has implications on microbial biogeography as Apodera vas and Alocodera cockayni were previously considered as two non-cosmopolite species with very broad geographical ranges and large ecological tolerances. Furthermore, we showed that the situation was far more complex, suggesting the existence of narrow local endemisms and ecological specialists, similarly to genera Hyalosphenia and Nebela (Chapter 5). Finally, we explored the diversity patterns of the genus Nebela along an elevation gradient (Chapter 6). We observed a decrease of abundance and diversity in high elevation corresponding to a typical mid-domain effect. Our study also revealed several unknown phylotypes restricted to the higher elevation that seemed to present competitive exclusion with the generalist taxa from lower elevation. In conclusion, this thesis highlights that molecular methods associated to robust morphological observations are efficient to reveal and describe the diversity of Amoebozoa. Furthermore, these microbial organisms display biogeographical and macroecological patterns similarly to animals, plants and fungi, when all groups are studied at the same taxonomical rank, i.e. species level.
Microbial eukaryote communities from Patagonian-Antarctic gradient of lakes evidence robust biogeographical patterns
2016-9-30, Schiaffino, M. Romina, Lara, Enrique, Fernández, Leonardo D., Balagué, Vanessa, Singer, David, Seppey, Christophe, Massana, Ramon, Izaguirre, Irina
Microbial eukaryotes play important roles in aquatic ecosystem functioning. Unravelling their distribution patterns and biogeography provides important baseline information to infer the underlying mechanisms that regulate the biodiversity and complexity of eco- systems. We studied the distribution patterns and factors driving diversity gradients in microeukaryote communities (total, abundant, uncommon and rare community composition) along a latitudinal gradient of lakes distributed from Argentinean Patagonia to Maritime Antarctica using both denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (Illumina HiSeq). DGGE and abundant Illumina operational taxonomic units (OTUs) showed both decreasing richness with latitude and significant differences between Patagonian and Antarctic lakes communities. In contrast, total richness did not change significantly across the latitudinal gradient, although evenness and diversity indices were significantly higher in Patagonian lakes. Beta-diversity was characterized by a high species turnover, influenced by both environmental and geographical descriptors, although this pattern faded in the rare community. Our results suggest the co-existence of a ‘core biosphere’ containing reduced number of abundant/dominant OTUs on which classical ecological rules apply, together with a much larger seedbank of rare OTUs driven by stochastic and reduced dispersal processes. These findings shed new light on the biogeographical patterns and forces structuring inland microeukaryote composition across broad spatial scales.
Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high-throughput sequencing
2016-3-1, Seppey, Christophe, Fournier, Bertrand, Szelecz, Ildikò, Singer, David, Mitchell, Edward, Lara, Enrique
Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro- environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.
A molecular approach to microeukaryotic diversity, ecology and biogeography associated with Sphagnum mosses
2017, Singer, David,, Lara, Enrique, Mitchell, Edward
Malgré le fait que les micro-eucaryotes composent la majeure partie de la biodiversité terrestre et jouent de nombreux rôles essentiels dans le maintien des écosystèmes, la connaissance de leur diversité, de leur écologie ainsi que de leurs aires de répartition reste très lacunaire. Dans ce sens, les objectifs de cette thèse sont 1) d’accroître la connaissance de la diversité des micro-eucaryotes 2) de caractériser les préférences écologiques et de déterminer quelles sont les principales variables qui influencent la composition des communautés et enfin 3) de comprendre les règles qui dirigent les communautés à l’échelle locale et globale. Pour atteindre ces objectifs, un milieu spécifique a été sélectionné : la "sphagnosphère", celui-ci désigne l’eau interstitielle sous l’influence des mousses de sphaignes (Sphagnum). Cet environnement est un excellent modèle en biologie car il se caractérise par une faible teneur en éléments nutritifs, un faible pH, des quantités élevées d’acides organiques et une grande stabilité dans le temps.
Nous avons d’abord exploré la diversité de deux groupes de protistes vivant dans les sphaignes. Le premier groupe est le genre Nebela (Arcellinida, Hyalospheniidae), un groupe d’amibes à thèque composé d’espèces étroitement apparentées. Nous avons décrit formellement la plus abondante et l’avons nommée Nebela gimllii en raison de la taille de sa thèque. Les différents profils de communautés ont révélé que les espèces ne sont pas distribuées de manière aléatoire dans les tourbières. Au contraire, nous avons observé un fort groupement phylogénétique dans les zones oligotrophes, ce qui suggère que les teneurs faibles en azote exercent une forte pression environnementale. Nous avons également étudié la diversité moléculaire du clade d’Oomycota. Ce sont des stramenopiles qui se composent de nombreux parasites d’animaux, de champignons et de végétaux, ainsi que d’espèces saprotrophes. Nous avons révélé une grande diversité dans ce clade ce qui était inattendu pour des organismes osmotrophes vivant dans des habitats oligotrophes. De plus, la plupart des phylotypes trouvés ne sont pour le moment pas décrits morphologiquement ni génétiquement, ce qui suggère l’existence d’organismes hautement spécialisés.
Nous avons également étudié la diversité des micro-eucaryotes vivant dans des Sphaignes situées à différentes altitudes dans trois zones climatiques différentes : tempérée (Suisse-France-Italie), subtropicale (Japon) et tropicale (Costa Rica). Nos résultats suggèrent que 25% des phylotypes étaient communs dans ces trois zones. Nous avons également trouvé une corrélation significativement négative entre la quantité de phylotypes liés aux organismes mixotrophes et des températures élevées. Cela suggère que la mixotrophie est désavantageuse dans un climat chaud. Enfin, nous avons étudié la répartition spatiale d’une espèce emblématique d’amibe à thèque trouvé dans les tourbières de l’hémisphère nord: Hyalosphenia papilio. Un total de 13 lignées ont été trouvées, dont neuf présentent des distributions restreintes et quatre sont bien réparties dans tout le domaine holarctique. Nous avons montré, sur la base de reconstructions phylogénétiques et d’une reconstitution des caractères ancestraux, que l’origine de H. papilio se situe probablement sur la côte ouest de l’Amérique du Nord.
En résumé, ma thèse démontre que l’environnement « sphagnosphère » accueille une diversité élevée et unique de micro-eucaryotes. Cette diversité est influencée par des variables environnementales physicochimiques à l’échelle locale mais également par le climat et la distance géographique à l’échelle mondiale. Nous avons identifié et quantifié les principales variables abiotiques locales (à savoir la microtopographie et la teneur en azote) qui influencent fortement les communautés au sein d’une même zone climatique. Ces variables ont exercé un fort effet de filtre environnemental, qui semble être un processus fondamental dans la mise en place des communautés. De plus, à l’échelle mondiale, nous avons démontré que la température était le principal paramètre influençant la composition de la communauté, et notamment l’abondance mixotrophique. Aux deux échelles, la composition des communautés, et donc les interactions biotiques (et probablement le fonctionnement des écosystèmes), changent radicalement., Despite the fact that free-living microeukaryotes compose the major part of Earth’s biodiversity and play numerous essential roles in ecosystems, knowledge on their true diversity, ecology and their global patterns of distribution remain limited. In this sense, the objectives of this thesis are 1) to increase the knowledge on the diversity of microeukaryotes 2) characterize the ecological preferences and determine which are the main variables that influence community composition, and finally 3) to understand the rules that shape the communities at both local and global scales. To meet these objectives a specific component of the earth surface was selected: the “Sphagnosphere” i.e. the interstitial water directly influenced by Sphagnum mosses. This understudied but unique microenvironment is characterized by low nutrient contents, low pH, and high amounts of organic acids produced by the mosses. It is also very stable over time.
We first explored the diversity of two groups of protists in Sphagnum peatlands. The first group was genus Nebela (Arcellinida, Hyalospheniidae), a common testate amoeba taxon in acidic soils. We formally described the most abundant one and named it Nebela gimllii due to the small and stout shells. The different community profiles revealed that species are not randomly distributed among microhabitats in peatlands. Instead, we observed a strong phylogenetic clustering in nitrogen-poor areas suggesting that little amounts of nitrogen exerted strong environmental filtering. We also surveyed the molecular diversity of Oomycota, a clade of fungi- like stramenopiles which enclose many animal, fungi and plant parasites, as well as saprotrophic species. We revealed a high diversity, which was unexpected for osmotrophic organisms in nutrient-poor habitats unless most are parasitic. Moreover, most phylotypes found were not recorded in previous studies, which suggest the existence of highly specialized organisms.
We also surveyed the diversity of microbial eukaryotes along altitudinal gradients in three different climatic zones, temperate (western Alps), subtropical (Japan) and tropical (Costa Rica). We showed that 25 percent of phylotypes were shared in the three climatic zones. We found also a significant negative correlation between the proportion of phylotypes related to mixotrophic organisms and temperature. This, in line with other lines of evidence in the literature corroborates the idea that mixotrophy is disadvantageous under warm climates. Finally, we studied the spatial distribution of an emblematic morphospecies of testate amoeba found in the northern hemisphere peatlands: Hyalosphenia papilio. A total of 13 lineages were found, from which nine showed narrowly restricted distributions, and four were well distributed across the Holarctic realm. We showed, based on phylogenetic analyses and ancestral character reconstructions that H. papilio most probably appeared somewhere in the West Coast of North America.
In summary, my PhD revealed that the Sphagnosphere environment hosts high and unique diversity. This diversity is driven by physicochemical factors at the local scale and by climate and geographical distance at the global scale. We identified and quantified the main local abiotic variables, amongst which micro-topography and nitrogen content appeared to be the most significant in shaping micro-eukaryotic diversity within the same climate zone. These variables exerted strong environmental filtering, which appeared to be fundamental process of community assembly. On the other hand, at a global scale, we demonstrated that temperature was the factor that best explain community composition, and notably the abundance of mixotrophs (and hence a different functioning). At both scales, community composition, and therefore biotic interactions (and most probably ecosystem functioning) change drastically.
Mycamoeba gemmipara nov. gen., nov. sp., the First Cultured Member of the Environmental Dermamoebidae Clade LKM74 and its Unusual Life Cycle
2016-8-20, Blandenier, Quentin, Seppey, Christophe, Singer, David, Vlimant, Michèle, Simon, Anaele, Duckert, Clément, Lara, Enrique
Since the first environmental DNA surveys, entire groups of sequences called “environmental clades” did not have any cultured representative. LKM74 is an amoebozoan clade affiliated to Dermamoebidae, whose presence is pervasively reported in soil and freshwater. We obtained an isolate from soil that we assigned to LKM74 by molecular phylogeny, close related to freshwater clones. We described Mycamoeba gemmipara based on observations made with light- and transmission electron microscopy. It is an extremely small amoeba with typical lingulate shape. Unlike other Dermamoebidae, it lacked ornamentation on its cell membrane, and condensed chromatin formed characteristic patterns in the nucleus. M. gemmipara displayed a unique life cycle: trophozoites formed walled coccoid stages which grew through successive buddings and developed into branched structures holding cysts. These structures, measuring hundreds of micrometres, are built as the exclusive product of osmotrophic feeding. In order to demonstrate that M. gemmipara is a genuine soil inhabitant, we screened its presence in an environmental soil DNA diversity survey performed on an experimental setup where pig cadavers were left to decompose in soils in order to follow changes in eukaryotic communities. M. gemmipara was present in all samples, although related reads were uncommon underneath the cadaver.
Planktonic eukaryote molecular diversity: discrimination of minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina)
2015-5-1, Lara, Enrique, Seppey, Christophe, González Garraza, Gabriela, Singer, David, Quiroga, Maria Victoria, Mataloni, Gabriela
We investigated the composition of the smallest size fraction (<3µm) of eukaryotic plankton communities of five pools located in the Rancho Hambre peat bog in Argentinean Tierra del Fuego with an IlluminaHiSeq massive sequencing approach applied to the v9 region of the eukaryotic SSU rRNA gene. Communities were generally dominated by chrysophytes, with a good representation of Perkinsea and Cercozoa clade NC-10. A community composition analysis performed using GUniFraC separated minerotrophic and ombrotrophic sites, reflecting perfectly the classification of the sites based on environmental data. However, this separation disappeared when more weight was given to abundant phylotypes, suggesting that subordinate phylotypes were responsible for site discrimination. The 5% best indicators for, respectively, minerotrophic and ombrotrophic environments were searched using an IndVal analysis. Among these, autotrophic taxa were more common in minerotrophic environments, whereas mixotrophic taxa represented best ombrotrophic water bodies. However, the ecological traits of many taxa have still not been determined, and still needs to be investigated for a better understanding of freshwater systems ecology.