Voici les éléments 1 - 7 sur 7
  • Publication
    Accès libre
    Exploration and characterization of "Amoebozoa" diversity and investigation of their diversity patterns at regional and global scales
    La diversité mondiale des eucaryotes est dominée par des organismes (principalement) unicellulaires appelés protistes. Parmi eux, les Amoebozoa sont l'un des groupes les plus abondants, diversifiés et caractéristiques du sol, jouant ainsi des rôles importants dans le fonctionnement des écosystèmes. Cependant, leur étude a été entravée par la difficulté de les détecter et le manque de traits morphologiques stables dans la plupart des groupes. Toutefois, certains amibozoaires comme les Hyalospheniformes (Arcellinida) produisent une thèque (c.-à-d. une coquille) caractéristique qui facilite leur identification, et sont donc considérées comme un groupe modèle approprié pour étudier les schémas de répartition de la diversité. Le développement récent du barcoding moléculaire a considérablement aidé pour l’identification taxonomique, tandis que le métabarcoding a permis de révéler la composition des communautés microbiennes sans biais d'observation et de culture. Ces méthodes se sont révélées efficaces pour plusieurs groupes microbiens, mais seulement quelques études ont été conçues pour les Amoebozoa et les protocoles disponibles sont encore assez rares. Les objectifs de ma thèse étaient alors 1) améliorer et développer des méthodes moléculaires pour étudier la diversité et l'écologie des amibozoaires, 2) estimer la diversité taxonomique et fonctionnelle présente dans le sol, 3) améliorer la taxonomie et phylogénie de cette diversité afin d'établir une base solide pour de futures recherches et 4) caractériser les facteurs écologiques susceptibles d'influencer la diversité microbienne à l'échelle locale, continentale et mondiale. Nous avons d'abord identifié un nouveau marqueur moléculaire pour étudier plusieurs groupes d’arcellinides, qui s'est révélé efficace pour discriminer des taxons proches et étudier simultanément les relations phylogénétiques profondes entre des taxons éloignés (chapitre 2). De plus, nous avons également adapté un protocole de métabarcoding pour étudier le genre Nebela avec des amorces COI spécifiques et une résolution taxonomique fine (chapitre 6). Ensuite, nous avons isolé, cultivé et décrit le premier membre d'un clade environnemental d’amibozoaires évolutivement très divergent (chapitre 3). Cette amibe, l'une des plus petites espèces d'amibes décrites, présente un cycle de vie unique avec une alternance de trophozoïtes actifs phagotrophes et de ramifications osmotrophes ressemblant aux champignons. Sa présence a été fréquemment reportée dans de nombreuses études de métabarcoding du sol, mais cet organisme n'avait jamais été caractérisé auparavant. En revanche, les Hyalospheniformes sont connus depuis les travaux d’Ehrenberg au XIXe siècle. Cependant, leur diversité au niveau de l’espèce reste mal caractérisée. Dans le chapitre 4, nous avons montré que l'espèce emblématique d’amibe à thèque, Nebela militaris, n'appartenait pas au genre Nebela, mais constituait une entité distincte dans l'arbre des Hyalospheniformes. Par conséquent, nous avons érigé le nouveau genre Alabasta pour cette espèce (chapitre 4). De plus, nous avons montré que la diversité des Hyalospheniformes avait été largement sous-estimée. En effet, nos résultats morphologiques et moléculaires ont révélé la présence de plusieurs espèces au sein des genres Apodera, Alocodera et Padaungiella. Cette nouvelle diversité a des impacts sur la biogéographie microbienne, car Apodera vas et Alocodera cockayni étaient auparavant considérées comme deux espèces non-cosmopolites avec des aires de répartition géographique très étendues et de grandes tolérances écologiques. Par conséquent, nous avons montré que la situation était beaucoup plus complexe, suggérant l'existence d'endémismes locaux étroits et de spécialistes écologiques, à l'instar des genres Hyalosphenia et Nebela (chapitre 5). Finalement, nous avons exploré la diversité du genre Nebela le long d’un gradient d’élévation (chapitre 6). Nous avons observé une diminution de l’abondance et de la diversité en haute altitude ce qui correspond à un effet typique de « milieu de domaine ». Notre étude a également révélé plusieurs phylotypes inconnus limités à de hautes altitudes qui semblent présenter une exclusion réciproque avec des taxons généralistes présents à des altitudes inférieures. En conclusion, cette thèse met en évidence que des méthodes moléculaires associées à des observations morphologiques robustes sont efficaces pour révéler et décrire la diversité des Amoebozoa. De plus, ces organismes microbiens possèdent des schémas biogéographiques et macro-écologiques similaires aux animaux, plantes et champignons, dès lors que ces groupes sont étudiés au même rang taxonomique, c'est-à-dire au niveau de l'espèce. ABSTRACT The world eukaryotic diversity is dominated by (mostly) single-celled organisms referred to as protists. Among them, the Amoebozoa are one of the most numerous, diverse and characteristic groups in soil, thus playing important roles in ecosystem functioning. However, their study has been impeded by the difficulty in detecting them and the lack of stable morphological traits in most groups. Nevertheless, some amoebozoans such as the Hyalospheniformes (Arcellinida) are characterized by a self-constructed test (i.e. shell) which facilitates their identification, and are then considered as a suitable model group for investigating diversity patterns of repartition. The recent development of DNA barcoding has helped considerably taxonomic identification, whereas metabarcoding has allowed revealing microbial community composition without observational and cultivation biases. These methods have proved efficient for several microbial groups, but only few studies have been designed for Amoebozoa and available protocols are still rather scarce. The aims of my thesis were then to 1) improve and develop molecular methods to study the amoebozoan diversity and ecology, 2) estimate their taxonomic and functional diversity in the soil, 3) improve the taxonomic and phylogenetic frame for this diversity in order to build a sound basis for further research and 4) characterize the ecological drivers which are likely to influence microbial diversity at local, continental and global scales. We first identified a new molecular marker to survey arcellinids taxa, which proved to be efficient for discriminating closely-related taxa and simultaneously investigating deep relationships among distant taxa (Chapter 2). In addition, we also adapted a metabarcoding protocol with specific COI primers to survey the diversity within the genus Nebela at a fine taxonomical resolution (Chapter 6). Then, we isolated, cultivated and described the first member of a deep-branching environmental clade of Amoebozoa (Chapter 3). This amoeba, one of the smallest amoeboid species described, presents a unique life cycle with an alternation of phagotrophic active trophozoites and osmotrophic fungi-like ramifications. Its presence has been pervasively reported in many soil metabarcoding studies, but this organism had never been characterized. By contrast, Hyalospheniformes are known since the works of Ehrenberg in the 19th century. However, their diversity at the species level remains poorly characterized. In chapter 4, we showed that the iconic testate amoeba species Nebela militaris did not belong to genus Nebela but branched as a separate entity in the Hyalospheniformes tree. Therefore, we erected the new genus Alabasta for this species (Chapter 4). In addition, we demonstrated that Hyalospheniformes diversity had been greatly underestimated. Indeed, our morphological and molecular results have revealed the presence for several species within the genera Apodera, Alocodera and Padaungiella. This new diversity has implications on microbial biogeography as Apodera vas and Alocodera cockayni were previously considered as two non-cosmopolite species with very broad geographical ranges and large ecological tolerances. Furthermore, we showed that the situation was far more complex, suggesting the existence of narrow local endemisms and ecological specialists, similarly to genera Hyalosphenia and Nebela (Chapter 5). Finally, we explored the diversity patterns of the genus Nebela along an elevation gradient (Chapter 6). We observed a decrease of abundance and diversity in high elevation corresponding to a typical mid-domain effect. Our study also revealed several unknown phylotypes restricted to the higher elevation that seemed to present competitive exclusion with the generalist taxa from lower elevation. In conclusion, this thesis highlights that molecular methods associated to robust morphological observations are efficient to reveal and describe the diversity of Amoebozoa. Furthermore, these microbial organisms display biogeographical and macroecological patterns similarly to animals, plants and fungi, when all groups are studied at the same taxonomical rank, i.e. species level.
  • Publication
    Accès libre
    Highly Diverse and Seasonally Dynamic Protist Community in a Pristine Peat Bog
    (2011) ; ;
    Moreira, David
    ;
    López-García, Purificación
    Culture-independent molecular methods based on the amplification, cloning and sequencing of small-subunit ribosomal RNA genes (SSU rDNAs) are powerful tools to study the diversity of microorganisms. Despite so, the eukaryotic microbial diversity of many ecosystems, including peatlands has not yet received much attention. We analysed the eukaryotic diversity by molecular surveys in water from the centre of a pristine Sphagnum-dominated peatland in the Jura Mountains of Switzerland during a complete seasonal cycle. The clone libraries constructed from five different temporal samplings revealed a high diversity of protists with representatives of all major eukaryotic phyla. In addition, four sequence types could not be assigned to any known high-level eukaryotic taxon but branched together with a rather good statistic support, raising the possibility of a novel, deep branching eukaryotic clade. The analysis of seasonal patterns of phylotypes showed a clear change in the eukaryotic communities between the warm period (late spring and summer) and the cold period (autumn and winter). Chrysophytes dominated the samples in the cold period while testate amoebae (Arcellinida and Euglyphida) and a few other groups peaked in summer. A few phylotypes (such as a cryptomonad and a perkinsid) were abundant at given sampling times and then almost disappeared, suggesting bloom-like dynamics.
  • Publication
    Accès libre
    Comparing Potential COI and SSU rDNA Barcodes for Assessing the Diversity and Phylogenetic Relationships of Cyphoderiid Testate Amoebae (Rhizaria: Euglyphida)
    (2011)
    Heger, Thierry J.
    ;
    Pawlowski, Jan
    ;
    ;
    Leander, Brian S.
    ;
    Todorov, Milcho
    ;
    Golemansky, Vassil
    ;
    The mitochondrial Cytochrome Oxidase Subunit 1 gene (COI) has been promoted as an ideal “DNA barcode” for animal species and other groups of eukaryotes. However, the utility of the COI marker for species level discrimination and for phylogenetic analyses has yet to be tested within the Rhizaria. Accordingly, we analysed mitochondrial COI gene sequences and nuclear small subunit rDNA (SSU) sequences from several morphospecies of euglyphid testate amoebae (Cercozoa, Rhizaria) in order to evaluate the utility of these DNA markers for species discrimination and phylogenetic reconstructions. Sequences were obtained from eleven populations belonging to six Cyphoderia morphospecies that were isolated from field samples in North America and Europe. Mean inter-population COI sequence dissimilarities were on average 2.9 times greater than in the SSU, while the intra-population sequence dissimilarities were higher in the SSU (0-0.95%) than in the COI (0%); this suggests that the COI fragment is valuable for discriminating Cyphoderiidae isolates. Our study also demonstrated that COI sequences are useful for inferring phylogenetic relationships among Cyphoderiidae isolates. COI and SSU tree topologies were very similar even though the COI fragment used in these analyses (500 bp) was much shorter than the SSU sequences (1600 bp). Altogether, these results demonstrate the utility of the COI as a potential taxonomic DNA barcode for assessing cyphoderiid species diversity and for inferring phylogenetic relationships within the group.
  • Publication
    Accès libre
    COI gene and ecological data suggest size-dependent high dispersal and low intra-specific diversity in free-living terrestrial protists (Euglyphida: Assulina)
    (2010) ;
    Heger, Thierry J.
    ;
    Scheihing, Rodrigo
    ;
    Aim  Propagule size and ecological requirements are believed to be major factors influencing the passive dispersal of free-living terrestrial protists. We compared the colonization potential of three closely related testate amoeba species (Assulina muscorum, A. seminulum, A. scandinavica, ranging from 40 to 100 μm in length).
    Location  Europe.
    Methods  We collected individual Assulina species cells from Sphagnum peatlands across Europe. We sequenced a 550-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) to estimate the within-species variability, as a proxy for gene flow. We reviewed existing ecological and palaeoecological data to assess the ecological tolerance of Assulina species and how rapidly they colonized developing peatlands.
    Results  We obtained COI sequences for 30 individuals of A. seminulum from eleven sites, for 39 of A. muscorum from six sites, and for six of A. scandinavica from two sites. We observed three haplotypes for A. seminulum and two for A. muscorum, often co-existing in the same sites. The sequences of A. scandinavica from the two sites were identical. Assulina muscorum and A. seminulum haplotypes varied by only 1–2 nucleotides, resulting in >99.5% similarity. Genetic diversity within A. seminulum was higher than that within A. muscorum. Ecological and palaeoecological records showed that A. muscorum was much more frequent and abundant than A. seminulum, and had a somewhat broader ecological tolerance for pH, moisture and water-table depth. Assulina muscorum always appeared early during the developmental history of peatlands, either before or simultaneously with A. seminulum.
    Main conclusions  The lack of genetic structure observed with a variable marker such as COI suggests high gene flow between the sites and thus rapid transport (at an evolutionary scale) over large distances, in agreement with the palaeoecological records. Thus, geographical distance alone does not seem to prevent the dispersal of testate amoebae, at least within Europe. Nevertheless, genetic diversity was significantly lower within A. muscorum than within A. seminulum, suggesting that its smaller size and abundance and/or broader ecological tolerance influence its effective dispersal capacity. These results are in agreement with the often earlier colonization of peatlands by A. muscorum and its broader ecological tolerance.
  • Publication
    Accès libre
    Ribosomal RNA Genes Challenge the Monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida)
    (2008) ;
    Heger, Thierry J.
    ;
    Ekelund, Flemming
    ;
    Lamentowicz, Mariucz
    ;
    To date only five partial and two complete SSU rRNA gene sequences are available for the lobose testate amoebae (Arcellinida). Consequently, the phylogenetic relationships among taxa and the definition of species are still largely dependant on morphological characters of uncertain value, which causes confusion in the phylogeny, taxonomy and the debate on cosmopolitanism of free-living protists. Here we present a SSU rRNA-based phylogeny of the Hyalospheniidae including the most common species. Similar to the filose testate amoebae of the order Euglyphida the most basal clades have a terminal aperture; the ventral position of the pseudostome appears to be a derived character. Family Hyalospheniidae appears paraphyletic and is separated into three clades: (1) Heleopera sphagni, (2) Heleopera rosea and Argynnia dentistoma and (3) the rest of the species from genera Apodera, Hyalosphenia, Porosia and Nebela. Our data support the validity of morphological characters used to define species among the Hyalospheniidae and even suggest that taxa described as varieties may deserve the rank of species (e.g. N. penardiana var. minor). Finally our results suggest that the genera Hyalosphenia and Nebela are paraphyletic, and that Porosia bigibbosa branches inside the main Nebela clade.
  • Publication
    Accès libre
    SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria : Euglyphida)
    (2007) ;
    Heger, Thierry J
    ;
    ;
    Meisterfeld, Ralf
    ;
    Ekelund, Flemming
    The existing data on the molecular phylogeny of filose testate amoebae from order Euglyphida has revealed contradictions between traditional morphological classification and SSU rRNA phylogeny and, moreover, the position of several important genera remained unknown. We therefore carried out a study aiming to fill several important gaps and better understand the relationships among the main euglyphid testate amoebae and the evolutionary steps that led to the present diversity at a higher level. We obtained new SSU rRNA sequences from five genera and seven species. This new phylogeny obtained shows that (1) the clade formed by species of genera Assulina and Placocista branches unambiguously at the base of the subclade of Euglyphida comprising all members of the family Trinematidae and genus Euglypha, (2) family Trinematidae (Trachelocorythion, Trinema, and Corythion) branches as a sister group to genus Euglypha, (3) three newly sequenced Euglypha species (E. cf. ciliata, E. penardi, and E. compressa) form a new clade within the genus. Since our results show that Assulina and Placocista do not belong to the Euglyphidae (unless the Trinematidae are also included in this family), we propose the creation of a new family named Assulinidae. Consequently, we give a family status to the genera Euglypha and (tentatively) Scutiglypha, which become the new family Euglyphidae. The evolutionary pattern suggested by SSU rRNA phylogeny shows a clear tendency towards increasing morphological complexity of the shell characterised by changes in the symmetry (migration of the aperture to a ventral position and/or compression of the shell) and the appearance of specialised scales at the aperture (in families Trinematidae and Euglyphidae). (C) 2007 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    SSU rRNA Reveals a Sequential Increase in Shell Complexity Among the Euglyphid Testate Amoebae (Rhizaria: Euglyphida)
    (2007) ;
    Heger, Thierry J.
    ;
    ;
    Meisterfeld, Ralf
    ;
    Ekelund, Flemming
    The existing data on the molecular phylogeny of filose testate amoebae from order Euglyphida has revealed contradictions between traditional morphological classification and SSU rRNA phylogeny and, moreover, the position of several important genera remained unknown. We therefore carried out a study aiming to fill several important gaps and better understand the relationships among the main euglyphid testate amoebae and the evolutionary steps that led to the present diversity at a higher level.
    We obtained new SSU rRNA sequences from five genera and seven species. This new phylogeny obtained shows that (1) the clade formed by species of genera Assulina and Placocista branches unambiguously at the base of the subclade of Euglyphida comprising all members of the family Trinematidae and genus Euglypha, (2) family Trinematidae (Trachelocorythion, Trinema, and Corythion) branches as a sister group to genus Euglypha, (3) three newly sequenced Euglypha species (E. cf. ciliata, E. penardi, and E. compressa) form a new clade within the genus.
    Since our results show that Assulina and Placocista do not belong to the Euglyphidae (unless the Trinematidae are also included in this family), we propose the creation of a new family named Assulinidae. Consequently, we give a family status to the genera Euglypha and (tentatively) Scutiglypha, which become the new family Euglyphidae.
    The evolutionary pattern suggested by SSU rRNA phylogeny shows a clear tendency towards increasing morphological complexity of the shell characterised by changes in the symmetry (migration of the aperture to a ventral position and/or compression of the shell) and the appearance of specialised scales at the aperture (in families Trinematidae and Euglyphidae).