Voici les éléments 1 - 10 sur 162
  • Publication
    Accès libre
    A new perspective to model subsurface stratigraphy in alluvial hydrogeological basins, introducing geological hierarchy and relative chronology
    (2023-1-17)
    Zuffetti, Chiara
    ;
    Communian, Alessandro
    ;
    Bersezio, Riccardo
    ;
    This paper presents a novel perspective for modelling alluvial stratigraphy. It integrates the spatial geological information, geological maps and well log descriptions, with the rules describing the hierarchy and relative chronology of the geological entities. As geological modelling tools are moving fast forward, the urgent need for expert geological input, codified as modelling rules, persists. Concerning subsurface alluvial architectures, the concepts of “stratigraphic hierarchy” and “relative chronology” provide the most relevant rules which permit to link the modelling procedure to the geo-history of a region. The paper shows how to formalize this knowledge into modelling rules. This is illustrated and implemented in a Python™ module named HIEGEO which is applied on a 2-D cross-section from the Po Basin (N-Italy). The stratigraphic correlation yields 2-D pictures of the hierarchic stratigraphy and relative chronology of the units. The input are: an attribute table of stratigraphic boundaries expressing their hierarchy and chronology; contact points where these boundaries cross the control logs. Since the aim of HIEGEO is to illustrate the principle of the method but not to replace existing 3-D geological modelling tools, it implements a linear interpolation algorithm which creates joins between contact points. It plots linear joins framing polygons based on their hierarchy, at any user’s desired detail. HIEGEO highlights potential inconsistencies of the input dataset, helping to re-evaluate the geological interpretation. The proposed workflow allows to: i) translate geological knowledge into modelling rules; ii) compute stratigraphic models constrained by the hierarchy of stratigraphic entities and the relative chronology of geological events; iii) represent internal geometries of the stratigraphic units, accounting for their composite nature; iv) reduce uncertainty in modelling alluvial architectures. It represents a starting point for multi-scale applications and could be easily integrated into 3-D modelling packages, to couple the hierarchical concept proposed here with existing advanced interpolation methods.
  • Publication
    Accès libre
    Hydro-geological modeling of the Roussillon aquifer : integrating geological knowledge uncertainties and geostatistical methods in groundwater modeling
    Ce travail de thèse porte sur la modélisation géologique et hydrodynamique de l’aquifère du Roussillon, en mettant l’accent sur la transition d’un modèle géologique détaillé, utilisant la méthode géostatistique de simulation multipoint (MPS), vers des modèles hydrodynamiques. La première étape de ce travail de thèse a consisté à créer les enveloppes du modèle géologique 3D du Roussillon. Les principales unités géologiques de l’aquifère du Roussillon comprennent le Pliocène marin, le Pliocène continental et le Quaternaire. La compilation d’une base de données géologiques, composés de logs géophysiques et de ligne sismiques, a permis de comprendre les structures de l’aquifère et d’interpoler les surfaces 2D qui délimitent le modèle géologique 3D. Une fois les enveloppes interpolées, la seconde étape de modélisation de ce travail s’est concentrée sur la simulation des faciès sédimentaire composant l’aquifère du Pliocène Continental. L’utilisation de l’approche de simulation multipoint (MPS) a permis de créer des modèles réalistes de faciès sédimentaire dans l’unité du Pliocène continental, en reproduisant des structures alluviales à l’échelle régionale. En complément de la simulation MPS, deux autres modèles sédimentaires ont été créés. Le premier est déterministe et se base sur l’interprétation d’essais de pompage pour caractériser les propriétés physiques du Pliocène Continental. Le second utilise une approche géostatistique appelée simulations séquentielles d’indicateurs (SIS) pour générer les propriétés hydrodynamiques de l’aquifère. Cette seconde approche géostatistique est plus couramment utilisée que le MPS et est plus simple à mettre en œuvre. La troisième étape de ce travail consiste en la définition du modèle hydrodynamique de l’aquifère du Roussillon. Le modèle hydrodynamique a été réalisé en considérant les conditions aux limites, les budgets de prélèvement asso- ciés, les observations piézométriques disponibles, et a été pré-calibrer en régime d’écoulement permanent dans une première phase de modélisation. Les modèle d’écoulement ont été réalisés avec le logiciel MODFLOW 6. La dernière étape de modélisation consiste en la création de modèle d’écoulement en régime transitoire ainsi que dans la création d’une approche de calibration des paramètres physique du modèle MPS du Pliocène Continental. Un défi important de ce travail réside dans la conciliation des modèles géologiques avec les données hydrodynamiques, ce qui nécessite une approche spécifique pour garantir de préserver les structures sédimentaires simulées, lors du processus de calibration. Il convient de noter que peu d’études existent sur la calibration des modèles MPS régionaux, et que souvent, les processus de calibration ne prennent pas en compte les éléments structuraux géologiques. La comparaison des approches de modélisation sédimentologique, effectuée en régime d’écoulement permanent et transitoire, met en avant une homogénéité des résultats entre les différentes approches. Les résultats en régime permanent sont satisfaisants pour les trois approches, mais peine à reproduire certains signaux en régime transitoire. Les problèmes des modèles en régime transitoire sont probablement dus à un problème d’initialisation du système hydrodynamique et de calibration des conditions limites. Ce travail propose donc une comparaison d’approches de modélisation sédimentologique et de leur impact sur les simulations hydrodynamiques. Il met en évidence des améliorations potentielles pour le modèle hydrogéologique de l’aquifère du Roussillon. Des données d’observation plus fiables et des informations sédimentologiques supplémentaires sont fortement recommandées, en particulier dans les zones présentant des différences significatives par rapport aux niveaux d’eau simulés, afin d’améliorer le modèle hydrogéologique. Cela permettrait de mieux comprendre le fonctionnement du système et de faciliter les ajustements locaux du modèle sédimentologique et des conditions hydrodynamiques. Malgré les difficultés rencontrées, notamment concernant la reproduction de certain signal piézométrique lors des simulations en régime transitoire, cette étude contribue à la compréhension de l’état de l’aquifère en identifiant les principales sources d’incertitude dans le modèle actuel de l’aquifère du Roussillon. ABSTRACT The presented study focuses on the geological and hydrodynamic modeling of the Roussillon aquifer. Located in southern France, near the Mediterranean Sea, the Roussillon plain covers an area of over 800 km2 and serves as the most important source of fresh water for the local community, supporting various needs such as irrigation, drinking water, and industrial usage. This aquifer is situated in one of the driest regions of France. Additionally, the aquifer experiences heavy water abstraction, mainly for drinking and agricultural purposes, leading to a steady decline in its water level over the years. The region is also affected by climatic changes, including rising sea levels and potential disruptions in precipitation patterns, which further impact the aquifer’s water availability. Balancing water management and conservation in the face of increasing population and climate change poses significant challenges for the Roussillon aquifer. The primary aim of the thesis is to enhance the geological understanding of the Roussillon aquifer and develop a hydrodynamic model to gain deeper insights into the functioning of the aquifer system. Additionally, the study aimed to create a solid foundation for investigating the potential consequences of climate change on this essential regional resource. The geological model consists of three main units, starting with the deepest unit, the Marine Pliocene unit, followed by the Continental Pliocene unit, and finally at the top the Quaternary unit. The initial phase of this work involved compiling a comprehensive geological database using onshore and offshore data sets to develop a conceptual understanding of the aquifer’s structures and to interpolate the main 2D surfaces that separate the 3D geological model. Within the Continental Pliocene layer, four subintervals were defined, and the elevation map of the three surfaces dividing these subintervals was mapped and interpolated using geophysical logs and offshore seismic data. The geological data set, although limited in resolution and coverage, served as conditioning data for the geostatistical simulation of the Continental Pliocene layer. We then used the multiplepoint simulation approach (MPS) to simulate realistic lithofacies patterns representative of the sediment spatial distribution in the Continental Pliocene layer. The 3D model of the Continental Pliocene layer was created by stacking 2D simulations controlled by vertical conditioning sampling. The results demonstrated satisfactory reproduction of sedimentary structures at the regional scale. In addition to the MPS simulation, two other approaches, a depth related approach and a Sequential Indicator Simulation (SIS) set, were used to generate hydro physical property fields for the aquifer. The depth related approach is based on the interpretation of hydraulic pumping tests, to assign hydraulic conductivity values based on the cell’s depth in the grid. The SIS employed a variogram based algorithm to simulate simple lithofacies structures (more simple compared to the MPS models). These three sets of hydraulic conductivity and specific storage values are used to feed the hydrodynamic simulations and estimate the propagated uncertainty of the sedimentological models on the hydrodynamic simulations. This work then focuses on defining the conceptual hydrodynamical model of the Roussillon aquifer. We present the main boundary conditions, their associated budgets, available piezometric observations, and the main modeling assumptions, linked to the different components of the MODFLOW 6 hydrodynamic model. In the first modeling step, a steady state calibration is performed to calibrate river parameters and mean hydraulic conductivity of simulated facies with the goal of preserving the simulated lithofacies patterns while matching the hydrodynamic observations. Once calibrated, we used these parameters for transient hydrodynamic models over a 20 years period. The three model approaches are used and compared in this study. It appears that reproducing the piezometric transient observation series presented some difficulties, with the models failing to capture the main trend of the piezometric levels on some locations. The reproduction of these piezomet ric series suffered from limited data availability, simplified river systems, and uncertainties regarding the local hydraulic conductivity and specific storage parameters. To better reproduce the piezometric series, this work ends with a short study on the use of the ES-MDA approach to attempt local corrections of the hydraulic conductivity and specific storage parameters. These initial tests faced limitations, as many forward models failed to converge during the process, limiting the applicability of the calibration process. Overall, this work proposes a unique regional comparison of sedimentological modeling approaches and their influence on hydrodynamic simulations. It also identifies directions for improving the aquifer model’s performance. Obtaining more reliable observation data series, as well as more onshore sedimentological information, especially in areas with significant deviations from simulated water levels, is highly recommended for improving the Roussillon hydrogeological model. This would aid in better understanding the system’s behavior and facilitate localized modifications of the sedimentological model and the hydrodynamic conditions. Despite the challenges faced, the study contributes to understanding the aquifer’s transient state, emphasizing the importance of sedimentological models in hydrodynamic studies, and identifying major sources of uncertainty in the current model of the Roussillon aquifer.
  • Publication
    Accès libre
    Stochastic multiple data integration for the characterization of quaternary aquifers
    La gestion des ressources en eaux souterraines nécessite souvent le développement de modèles géologiques et hydrogéologiques. Cependant, la construction de modèles précis peut s’avérer une tâche difficile et longue, en particulier dans les vastes zones présentant des dépôts quaternaires complexes. Or, ces zones sont souvent celles qui sont le plus fréquemment soumises à l’exploitation des ressources et à la pollution. Pour résoudre ce problème, plusieurs études ont proposé des méthodologies innovantes pour intégrer différents types de données, notamment des données sur les puits, des données géophysiques et des données hydrogéologiques. L’objectif est de faciliter la construction de ces modèles dans des cadres cohérents et reproductibles avec une estimation robuste des erreurs. Nous présentons ici quatre études qui proposent de nouvelles méthodologies pour relever ce défi. La première étude présente un vaste et dense ensemble de données électromagnétiques dans le domaine temporel (TDEM) acquises dans la haute vallée de l’Aar, en Suisse, afin d’améliorer la connaissance des variations spatiales des dépôts quaternaires. Les modèles de résistivité inversée dérivés de cette acquisition ont été publiés et pourraient être utilisés pour diverses études futures. Cette étude met également en évidence le potentiel de l’ensemble de données pour le développement d’algorithmes d’intégration de données en raison de l’abondance de diverses données librement disponibles sur la même zone. La deuxième étude propose une nouvelle méthodologie pour combiner les forages et les données géophysiques avec une propagation de l’incertitude pour prédire la probabilité d’argile à l’échelle d’une vallée. Une fonction de translation variant dans l’espace a été utilisée pour estimer la fraction d’argile à partir de la résistivité. Les paramètres de cette fonction sont inversés en utilisant la description des forages comme points de contrôle. Ils combinent cette estimation de la fraction d’argile avec un cadre d’interpolation stochastique 3D non déterministe basé sur un algorithme de statistiques à points multiples et une fonction aléatoire gaussienne afin d’obtenir un modèle 3D réaliste à haute résolution spatiale de la fraction d’argile pour la haute vallée de l’Aar. L’étude démontre la qualité des valeurs prédites et leurs incertitudes correspondantes en utilisant la validation croisée. La troisième étude porte sur la possibilité d’intégrer des données de forage, géophysiques et hydrogéologiques, tout en conservant la cohérence du concept géologique des modèles. Nous avons utilisé un générateur stochastique de modèles géologiques pour construire un ensemble de modèles préalables basés sur les forages. Nous proposons ensuite une approche d’inversion multi-échelle qui combine des modèles peu fidèles et moins précis avec des modèles plus fidèles et plus précis afin de réduire le temps nécessaire à la convergence de l’inversion. Les données géophysiques et hydrogéologiques sont intégrées à l’aide d’un algorithme ES-MDA (Ensemble Smoother with Multiple Data Assimilation Algorithm). Le flux de travail garantit que les modèles sont géologiquement cohérents et estime de manière robuste l’incertitude associée au modèle final. L’étude démontre l’efficacité de cette approche pour un cas synthétique contrôlé. Elle montre que ArchPY et ES-MDA sont capables de générer des réalisations plausibles de la subsurface pour les modèles sédimentologiques du Quaternaire. Enfin, la quatrième étude présente une méthodologie innovante qui combine l’algorithme ES-MDA avec un code de modélisation géologique hiérarchique open-source pour intégrer des sources de données multiples et construire des modèles géologiquement cohérents avec une estimation d’erreur robuste. La méthodologie est appliquée à un cas de terrain dans la haute vallée de l’Aar, en Suisse. Un cadre de validation croisée est mis en oeuvre afin d’évaluer la méthodologie. L’approche aboutit à des modèles finaux qui équilibrent efficacement la précision et l’incertitude et qui peuvent prendre en compte diverses sources de données, y compris des données géophysiques, des connaissances conceptuelles régionales, des forages et des mesures hydrogéologiques à l’échelle d’une vallée. En résumé, cette thèse présente plusieurs méthodes innovantes qui pourraient être appliquées à la réalisation de modèles hydrogéologiques à petite ou grande échelle. ABSTRACT Groundwater resource management often requires the development of geological and hydrogeological models. However, constructing accurate models can be a challenging and time-consuming task, especially in large areas with complex Quaternary deposits. However, these areas are often the most frequently subject to resource exploitation and pollution. To address this issue, several studies have proposed innovative methodologies to integrate various types of data, including wells, geophysical, and hydrogeological data. The objective is to facilitate the construction of these models within coherent and reproducible frameworks with robust error estimation. In these, we present four studies that present novel methodologies to address this challenge. The first study presents a large and dense Time Domain ElectroMagnetic (TDEM) dataset acquired in the upper Aare Valley, Switzerland, to improve knowledge of the spatial variations of Quaternary deposits. The inverted resistivity models derived from this acquisition were published and could be used for various future studies. It also highlights the data set’s potential for data integration algorithm development because of the abundance of various freely available data on the same zone. The second study proposes a new methodology to combine boreholes and geophysical data with a propagation of the uncertainty to predict the probability of clay at the scale of a valley. A spatially varying translator function was used to estimate the clay fraction from resistivity. The parameters of this function are inverted using the description of the boreholes as control points. They combine this clay fraction estimation with a nondeterministic 3D stochastic interpolation framework based on a Multiple Points Statistics algorithm and Gaussian Random Function to obtain a 3D realistic high spatial resolution model of clay fraction for the upper Aare valley. The study demonstrates the quality of the predicted values and their corresponding uncertainties using cross-validation. The third study addresses the possibility of integrating boreholes, geophysical, and hydrogeological data, while keeping the geological concept of the models coherent. We used a stochastic geological model generator to construct a set of prior models based on the boreholes. We then propose a multiscale inversion approach that combines low-fidelity and less accurate models with high-fidelity and more accurate models to reduce the time needed for the inversion to converge. Both geophysical and hydrogeological data are integrated, using an Ensemble Smoother with Multiple Data Assimilation Algorithm (ES-MDA) algorithm. The workflow ensures that the models are geologically consistent and robustly estimate the associated uncertainty with the final model. The study demonstrates the effectiveness of this approach for a controlled synthetic case. It shows that ArchPY and ES-MDA are capable of generating plausible subsurface realizations for Quaternary Sedimentological Models. Finally, the fourth study presents an innovative methodology that combines the ES-MDA algorithm with an open-source hierarchical geological modeling code to integrate multiple data sources and construct geologically consistent models with robust error estimation. The methodology is applied to a field case in the upper Aare Valley, Switzerland. In order to benchmark the methodology, a cross-validation framework is implemented. The approach results in final models that effectively balance accuracy and uncertainty and can take into account various data sources, including geophysical data, regional conceptual knowledge, boreholes, and hydrogeological measurements at a valley scale. In summary, this thesis presents several innovative methods that could be applied on small to large scale hydrogeological model realization.
  • Publication
    Accès libre
    Efficiency of template matching methods for Multiple-Point Statistics simulations
    (2021-8)
    Sharifzadeh Lari, Mansoureh
    ;
    ;
    Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise. Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.
  • Publication
    Accès libre
    Ice volume and basal topography estimation using geostatistical methods and GPR measurements: Application on the Tsanfleuron and Scex Rouge glacier, Swiss Alps
    Ground Penetrating Radar (GPR) is nowadays widely used for determining glacier thickness. However, this method provides thickness data only along the acquisition lines and therefore interpolation has to be made between them. Depending on the interpolation strategy, calculated ice volumes can differ and can lack an accurate error estimation. Furthermore, glacial basal topography is often characterized by complex geomorphological features, which can be hard to reproduce using classical 5 interpolation methods, especially when the conditioning data are sparse or when the morphological features are too complex. This study investigates the applicability of multiple-point statistics (MPS) simulations to interpolate glacier bedrock topography using GPR measurements. In 2018, a dense GPR data set was acquired on the Tsanfleuron Glacier (Switzerland). The results obtained with the direct sampling MPS method are compared against those obtained with kriging and sequential Gaussian simulations (SGS) on both a synthetic data set – with known reference volume and bedrock topography – and the real data 10 underlying the Tsanfleuron glacier. Using the MPS modelled bedrock, the ice volume for the Scex Rouge and Tsanfleuron Glacier is estimated to be 113.9 ± 1.6 Miom3 . The direct sampling approach, unlike the SGS and the kriging, allowed not only an accurate volume estimation but also the generation of a set of realistic bedrock simulations. The complex karstic geomorphological features are reproduced, and can be used to significantly improve for example the precision of under-glacial flow estimation.
  • Publication
    Accès libre
    tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments
    (2021-6) ;
    Kumar Maurya, Pradip
    ;
    Vest Christiansen, Anders
    ;
    Quaternary deposits are complex and heterogeneous. They contain some of the most abundant and extensively used aquifers. In order to improve the knowledge of the spatial heterogeneity of such deposits, we acquired a large (1500 ha) and dense (20 m spacing) time domain electromagnetic (TDEM) data set in the upper Aare Valley, Switzerland (available at https://doi.org/10.5281/zenodo.4269887; Neven et al., 2020). TDEM is a fast and reliable method to measure the magnetic field directly related to the resistivity of the underground. In this paper, we present the inverted resistivity models derived from this acquisition. The depth of investigation ranges between 40 and 120 m, with an average data residual contained in the standard deviation of the data. These data can be used for many different purposes: from sedimentological interpretation of quaternary environments in alpine environments, geological and hydrogeological modeling, to benchmarking geophysical inversion techniques.
  • Publication
    Accès libre
    A Karst Probability Map for the Western Mountain Aquifer (Israel & West Bank) using a stochastic modeling approach
    (2021-4-13)
    Banush, Sandra
    ;
    Somogyvari, Mark
    ;
    Sauter, Martin
    ;
    ;
    Engelhardt, Irina
  • Publication
    Accès libre
    An Attempt to Boost Posterior Population Expansion Using Fast Machine Learning Algorithms
    In hydrogeology, inverse techniques have become indispensable to characterize subsurface parameters and their uncertainty. When modeling heterogeneous, geologically realistic discrete model spaces, such as categorical fields, Monte Carlo methods are needed to properly sample the solution space. Inversion algorithms use a forward operator, such as a numerical groundwater solver. The forward operator often represents the bottleneck for the high computational cost of the Monte Carlo sampling schemes. Even if efficient sampling methods (for example Posterior Population Expansion, PoPEx) have been developed, they need significant computing resources. It is therefore desirable to speed up such methods. As only a few models generated by the sampler have a significant likelihood, we propose to predict the significance of generated models by means of machine learning. Only models labeled as significant are passed to the forward solver, otherwise, they are rejected. This work compares the performance of AdaBoost, Random Forest, and convolutional neural network as classifiers integrated with the PoPEx framework. During initial iterations of the algorithm, the forward solver is always executed and subsurface models along with the likelihoods are stored. Then, the machine learning schemes are trained on the available data. We demonstrate the technique using a simulation of a tracer test in a fluvial aquifer. The geology is modeled by the multiple-point statistical approach, the field contains four geological facies, with associated permeability, porosity, and specific storage values. MODFLOW is used for groundwater flow and transport simulation. The solution of the inverse problem is used to estimate the 10 days protection zone around the pumping well. The estimated speed-ups with Random Forest and AdaBoost were higher than with the convolutional neural network. To validate the approach, computing times of inversion without and with machine learning schemes were computed and the error against the reference solution was calculated. For the same mean error, accelerated PoPEx achieved a speed-up rate of up to 2 with respect to the standard PoPEx.
  • Publication
    Accès libre
    Conditioning Multiple-Point Statistics Simulation to Inequality Data
    Stochastic modeling is often employed in environmental sciences for the analysis and understanding of complex systems. For example, random fields are key components in uncertainty analysis or Bayesian inverse modeling. Multiple-point statistics (MPS) provides efficient simulation tools for simulating fields reproducing the spatial statistics depicted in a training image (TI), while accounting for local or block conditioning data. Among MPS methods, the direct sampling algorithm is a flexible pixel-based technique that consists in first assigning the conditioning data values (so-called hard data) in the simulation grid, and then in populating the rest of the simulation domain in a random order by successively pasting a value from a TI cell sharing a similar pattern. In this study, an extension of the direct sampling method is proposed to account for inequality data, that is, constraints in given cells consisting of lower and/or upper bounds for the simulated values. Indeed, inequality data are often available in practice. The new approach involves the adaptation of the distance used to compare and evaluate the match between two patterns to account for such constraints. The proposed method, implemented in the DeeSse code, allows generating random fields both reflecting the spatial statistics of the TI and honoring the inequality constraints. Finally examples of topography simulations illustrate and show the capabilities of the proposed method.
  • Publication
    Accès libre
    The Travelling Pilot Point Method for solving groundwater inverse problems in aquifers with categorical distributions
    Les distributions discrètes de paramètres sont courantes dans les systèmes hydrogéologiques constitués de faciès/catégories géologiques aux propriétés distinctes, par exemple, des chenaux de forte perméabilité noyés dans une matrice de faible perméabilité. Par exemple, les sites contaminés sont souvent constitués d’aquifères aux faciès géologiques distincts. L’identification des faciès de faible perméabilité est très importante sur ces sites car ces faciès stockent une partie de la masse de solutés et agissent comme des sources secondaires pour les faciès à perméabilité plus élevée, maintenant les concentrations pendant des décennies tout en augmentant le risque et les coûts de décontamination. L’estimation de ces paramètres est difficile car les discontinuités dans l’espace des paramètres entravent le problème inverse. Les recherches précédentes dans ce domaine se sont concentrées sur l’utilisation de méthodes stochastiques. Dans cette thèse, une nouvelle approche basée sur des points pilotes voyageurs (TRIPS) pour résoudre le problème inverse catégorique est présentée. Dans les implémentations traditionnelles, les propriétés de l’aquifère (par exemple, la conductivité hydraulique) sont estimées aux emplacements fixes des points pilotes. Dans l’implémentation TRIPS, les propriétés associées aux points pilotes et leurs emplacements sont estimés. Des contraintes de régularisation de Tikhonov sont incorporées dans le processus d’estimation des paramètres pour produire des représentations réalistes des paramètres. Le cadre TRIPS est alternativement combiné avec la méthode Null Space Monte Carlo (NSMC) et le filtre d’ensemble pestpp-ies pour résoudre le problème inverse catégorique pour un aquifère hypothétique. Alors que la méthode NSMC et la méthode pestpp-ies ont produit des ensembles a posteriori similaires à un ensemble estimé à l’aide de l’échantillonnage par rejet (RS), la méthode pestpp-ies a été capable d’échantillonner la distribution a posteriori avec un nombre inférieur d’évaluations, et ce de manière plus complète. Des techniques de sélection de modèles ont été utilisées pour créer un ensemble a priori plus petit mais stratégiquement diversifié qui, une fois lissé, a produit un ensemble a posteriori avec des propriétés similaires à celles d’un ensemble a posteriori plus grand. De plus, TRIPS et pestpp-ies ont été utilisés ensemble pour développer des ensembles de paramètres catégoriques qui honorent simultanément les charges hydrauliques et les concentrations mesurées dans les aquifères. Les résultats indiquent que même avec un modèle géologique préalable approximatif, un haut degré de paramétrisation et de correspondance de l’historique peut conduire à des ensembles de paramètres qui peuvent être utiles pour faire certains types de prédictions (exemple : prédictions de concentration). Cependant, pour des prédictions plus exigeantes (exemple : masse), un modèle géologique préalable approximatif n’est pas adéquat. L’analyse a été utilisée pour démontrer comment un cadre comportant plusieurs pièces de puzzle (paramétrage géologique, ajustemen des données historiques et prévisions de remédiation) pouvait être assemblé efficacement pour guider les décideurs sur les sites contaminés en quantifiant l’incertitude prédictive associée à l’incertitude des paramètres. En passant des modèles prédictifs basés sur un seul modèle calibré à une approche basée sur un ensemble, les décideurs peuvent quantifier l’incertitude et prendre des décisions pragmatiques. Les analyses de la valeur des données qui peuvent guider les futurs efforts de collecte de données pourraient également être intégrées au cadre afin d’améliorer les résultats futurs. ABSTRACT Categorical parameter distributions are commonplace in hydrogeological systems consisting of geologic facies/categories with distinct properties, e.g., high-permeability channels embedded in a low-permeability matrix. Contaminated sites are often underlain by aquifers with distinct geological facies. Identifying low-permeability facies is very important at these sites because these facies store solute mass and act as secondary sources to higher-permeability facies, sustaining concentrations for decades while increasing risk and life-cycle costs. Parameter estimation is difficult in such systems because the discontinuities in the parameter space hinder the inverse problem. Previous research in this area has been focused on the use of stochastic methods. In this thesis, a novel approach based on Traveling Pilot points (TRIPS) to solve the categorical inverse problem is presented. In traditional implementations, aquifer properties (e.g., hydraulic conductivity) are estimated at fixed pilot point locations. In the TRIPS implementation, both the properties associated with the pilot points and their locations are estimated. Tikhonov regularization constraints are incorporated in the parameter estimation process to produce realistic parameter depictions. The TRIPS framework is alternatively combined with the Null Space Monte Carlo (NSMC) method and the pestpp-ies ensemble smoother to solve the categorical inverse problem for a hypothetical aquifer. While both NSMC and pestpp-ies produced posterior ensembles with similarities to an ensemble estimated using Rejection Sampling (RS), pestpp-ies was able to sample the posterior distribu tion with lesser number of forward run evaluations in a more comprehensive manner. Model selection techniques, a combination of multi-dimensional scaling and K-Means clustering, were used to create a smaller but strategically diverse prior ensemble that when smoothed produced a posterior ensemble with properties similar to that of a larger posterior ensemble. Additionally, TRIPS and pestpp-ies together were used to develop categorical parameter ensembles that honor measured aquifer heads and concentrations simultaneously. The results indicated that even with an approximate geological prior model, a high degree of parameterization and history matching can lead to parameter ensembles that can be useful for making certain types of predictions (example: concentration predictions). However, for more demanding predictions (example: mass), an approximate geological prior is not adequate. The analysis was used to demonstrate how a framework with multiple puzzle pieces (geological pa rameterization, history matching, and remedial forecasts) could be efficiently assembled to guide decision makers at contaminated sites by quantifying the predictive uncertainty associated with parameter uncertainty. By pivoting from predictive models based on a single calibrated model to an ensemble-based approach, decision-makers can quantify uncertainty and take pragmatic decisions. Data worth analyses that can guide future data collection efforts could also be integrated into the framework to better future outcomes.