Options
Formenti, Ludovico
Nom
Formenti, Ludovico
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 4 sur 4
- PublicationAccès libreThe effect of root‐associated microbes on plant growth and chemical defence traits across two contrasted elevations(2020-5-29)
; ;Caggia, Veronica ;Puissant, Jérémy ;Goodall, Tim ;Glauser, Gaétan ;Griffiths, Robert - PublicationAccès libreMycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production(2019-3-12)
; Arbuscular mycorrhizal (AM) fungi favor plant growth by improving nutrient acquisition, but also by increasing their resistance against abiotic and biotic stressors, including herbivory. Mechanisms of AM fungal mediated increased resistance include a direct effect of AM fungi on plant vigor, but also a manipulation of the hormonal cascades, such as the systemic activation of jasmonic acid (JA) dependent defenses. However, how AM fungal inoculation and variation in the endogenous JA production interact to produce increased resistance against insect herbivores remains to be further elucidated. To address this question, three genotypes of Solanum lycopersicum L., a JA-biosynthesis deficient mutant, a JA over-accumulating mutant, and their wild-type were either inoculated with AM fungi or left un-inoculated. Plant growth-related traits and resistance against Spodoptera littoralis (Boisduval) caterpillars, a major crop pest, were measured. Overall, we found that deficiency in JA production reduced plant development and were the least resistant against S. littoralis. Moreover, AM fungi increased plant resistance against S. littoralis, but such beneficial effect was more pronounced in JA-deficient plant than on JA over-accumulating plants. These results highlight that AM fungi-driven increased plant resistance is negatively affected by the ability of plants to produce JA and that AM fungi complement JA-mediated endogenous plant defenses in this system. - PublicationAccès libreVariable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients(2019-2-28)
; ; ;Caggìa, Veronica; Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment‐driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant‐common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense‐related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth‐related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low‐elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature‐driven growth response maximization. - PublicationAccès libre