Voici les éléments 1 - 9 sur 9
  • Publication
    Métadonnées seulement
    Effects of decomposing cadavers on soil nematode communities over a one-year period
    (2016-12-1) ; ; ; ;
    Steel, Hanne
    ;
    Neilson, Roy
    ;
    Griffiths, Bryan S.
    ;
    Amendt, Jens
    ;
    In terrestrial ecosystems decomposing cadavers act as resource patches affecting nutrient cycling and soil communities, but the effects on soil communities are not well known. In this study we investigated nematode community response to decomposing pig cadavers (Sus scrofa) over a one-year period. As nematodes play key roles in soil food webs and are known to respond to disturbances and nutrient enrichment, we hypothesised that they would respond to decomposing cadavers and that this response would change over time. We compared the temporal patterns of nematode density and community structure under pig cadavers, either placed directly on the ground or hung 1 m aboveground (for effects of cadaveric fluids only), with two controls, i.e., bare soil and bags filled with soil placed on the ground (fake pigs e for microclimatic effects only). In the control and fake pig treatments nematode densities, community patterns and maturity indices did not change significantly. In contrast, density increased significantly underneath the ground and hanging pigs two weeks after the beginning of the experiment, and nematode family richness, Simpson diversity and maturity index were sgnificantly reduced in the cadaver treatments. Most nematode families responded negatively to cadavers with the notable exceptions of Rhabditidae, Neodiplogasteridae and Diplogasteroididae. The latter two were found exclusively underneath the decomposing cadavers and are promising bioindicators of vertebrate cadaver decomposition. Even though diversity, density and communities were recovering after one year, the impact of cadavers was still significant for the maturity index. These contrasting patterns illustrate how decomposing cadavers contribute to increasing local biodiversity and suggest that soil nematodes could be used as a tool to document the presence of a decomposing cadaver, or to estimate the time elapsed since death (post-mortem interval). Patterns should, however, be compared in different settings and seasons before such a tool can be validated.
  • Publication
    Accès libre
    Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
    (2016-1-9) ;
    Dozsa-Farkas, Klara
    ;
    Boros, Gergely
    ;
    Rochat, Guy
    ;
    Sandoz, Gauthier
    ;
    ; ;
    Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuch^atel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age. While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis). This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.
  • Publication
    Accès libre
    Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland
    (2015-3-4) ;
    Feldmeyer-Christe, Elizabeth
    ;
    Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions inresponse to on-going climate and other environmental changes. Although the responses of soil organismsand plants to ecological gradients and perturbations do not always correlate, peatland monitoring ismainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributorsto carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology andpaleoecology. There is however little comparative data on the value of testate amoebae, vascular plantsand bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil tempera-ture, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in fourpeatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plantsand bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species orspecies-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function modelsfor inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (%variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions(micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants andbryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindi-cation value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzedon samples collected at any season (accessibility allowing and if precise sampling sites are well marked)– a clear advantage for biomonitoring and can be used to infer past changes from the peat record at thesame taxonomic resolution. This simple approach could therefore be very useful for biomonitoring ofpeatlands.
  • Publication
    Accès libre
    Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future
    (2008) ;
    Charman, Daniel J.
    ;
    Warner, Barry G.
    Testate amoebae are an abundant and diverse polyphyletic group of shelled protozoa living in aquatic to moist habitats ranging from estuaries to lakes, rivers, wetlands, soils, litter, and moss habitats. Owing to the preservation of shells in sediments, testate amoebae are useful proxy indicators complementary to long-established indicators such as pollen and spores or macrofossils. Their primary use to date has been for inferring past moisture conditions and climate in ombrotrophic peatlands and, to a lesser extent, to infer pH in peatlands and the trophic or nutrient status of lakes. Recent research on these organisms suggests other possible uses in paleoecology and ecology such as sea-level reconstruction in estuarine environments, as indicators of soil or air pollution, and monitoring recovery of peatland. We review the past and present use of testate amoebae, the challenges in current research, and provide some ideas on future research directions.
  • Publication
    Accès libre
    Additive partitioning of testate amoeba species diversity across habitat hierarchy within the pristine southern taiga landscape (Pechora-Ilych Biosphere Reserve, Russia)
    Tsyganov, Andrey N
    ;
    Komarov, Alexander A
    ;
    ;
    Shimano, Satoshi
    ;
    Smirnova, Olga V
    ;
    Aleynikov, Alexey A
    ;
    Mazei Yuri A
    In order to better understand the distribution patterns of terrestrial eukaryotic microbes and the factors governing them, we studied the diversity partitioning of soil testate amoebae across levels of spatially nested habitat hierarchy in the largest European old-growth dark coniferous forest (Pechora-Ilych Biosphere Reserve; Komi Republic, Russia). The variation in testate amoeba species richness and assemblage structure was analysed in 87 samples from six biotopes in six vegetation types using an additive partitioning procedure and principal component analyses. The 80 taxa recorded represent the highest value of species richness for soil testate amoebae reported for taiga soils so far. Our results indicate that testate amoeba assemblages were highly aggregated at all levels and were mostly controlled by environmental factors rather than dispersal processes. The variation in species diversity of testate amoebae increased from the lowest to the highest hierarchical level. We conclude that, similarly to macroscopic organisms, testate amoeba species richness and community structure are primarily controlled by environmental conditions within the landscape and suggest that metacommunity dynamics of free-living microorganisms are driven by species sorting and/or mass effect processes.
  • Publication
    Accès libre
    Environmental DNA COI barcoding for quantitative analysis of protists communities: A test using the Nebela collaris complex (Amoebozoa;Arcellinida; Hyalospheniidae)
    Environmental DNA surveys are used for screening eukaryotic diversity. However, it is unclear how quantitative this approach is and to what extent results from environmental DNA studies can be used for ecological studies requiring quantitative data. Mitochondrial cytochrome oxidase (COI) is used for species-level taxonomic studies of testate amoebae and should allow assessing the community composition from environmental samples, thus bypassing biases due to morphological identification. We tested this using a COI clone library approach and focusing on the Nebela collaris complex. Comparisons with direct microscopy counts showed that the COI clone library diversity data matched the morphologically identified taxa, and that community com-position estimates using the two approaches were similar. However, this correlation was improved when microscopy counts were corrected for biovolume. Higher correlation with biovolume-corrected community data suggests that COI clone library data matches the ratio of mitochondria and that within closely-related taxa the density of mitochondria per unit biovolume is approximately constant. Further developments of this metabarcoding approach including quantifying the mitochondrial density among closely-related taxa, experiments on other taxonomic groups and using high throughput sequencing should make if possible to quantitatively estimate community composition of different groups, which would be invaluable for microbial food webs studies.
  • Publication
    Accès libre
    Can soil testate amoebae be used for estimating the time since death?: A field experiment in a deciduous forest
    Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4–6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchâtel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers – and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI.
  • Publication
    Accès libre
    Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland
    ;
    Feldmeyer-Christe, Elizabeth
    ;
    Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.
    We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).
    Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).
    Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.
  • Publication
    Accès libre
    Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
    ;
    Dózsa-Farkas, Klára
    ;
    Boros, Gergely
    ;
    Rochat, Guy
    ;
    Sandoz, Gauthier
    ;
    ; ;
    Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuchâtel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age.
    While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis).
    This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.