Voici les éléments 1 - 10 sur 11
  • Publication
    Accès libre
    Exploration and characterization of "Amoebozoa" diversity and investigation of their diversity patterns at regional and global scales
    La diversité mondiale des eucaryotes est dominée par des organismes (principalement) unicellulaires appelés protistes. Parmi eux, les Amoebozoa sont l'un des groupes les plus abondants, diversifiés et caractéristiques du sol, jouant ainsi des rôles importants dans le fonctionnement des écosystèmes. Cependant, leur étude a été entravée par la difficulté de les détecter et le manque de traits morphologiques stables dans la plupart des groupes. Toutefois, certains amibozoaires comme les Hyalospheniformes (Arcellinida) produisent une thèque (c.-à-d. une coquille) caractéristique qui facilite leur identification, et sont donc considérées comme un groupe modèle approprié pour étudier les schémas de répartition de la diversité. Le développement récent du barcoding moléculaire a considérablement aidé pour l’identification taxonomique, tandis que le métabarcoding a permis de révéler la composition des communautés microbiennes sans biais d'observation et de culture. Ces méthodes se sont révélées efficaces pour plusieurs groupes microbiens, mais seulement quelques études ont été conçues pour les Amoebozoa et les protocoles disponibles sont encore assez rares. Les objectifs de ma thèse étaient alors 1) améliorer et développer des méthodes moléculaires pour étudier la diversité et l'écologie des amibozoaires, 2) estimer la diversité taxonomique et fonctionnelle présente dans le sol, 3) améliorer la taxonomie et phylogénie de cette diversité afin d'établir une base solide pour de futures recherches et 4) caractériser les facteurs écologiques susceptibles d'influencer la diversité microbienne à l'échelle locale, continentale et mondiale. Nous avons d'abord identifié un nouveau marqueur moléculaire pour étudier plusieurs groupes d’arcellinides, qui s'est révélé efficace pour discriminer des taxons proches et étudier simultanément les relations phylogénétiques profondes entre des taxons éloignés (chapitre 2). De plus, nous avons également adapté un protocole de métabarcoding pour étudier le genre Nebela avec des amorces COI spécifiques et une résolution taxonomique fine (chapitre 6). Ensuite, nous avons isolé, cultivé et décrit le premier membre d'un clade environnemental d’amibozoaires évolutivement très divergent (chapitre 3). Cette amibe, l'une des plus petites espèces d'amibes décrites, présente un cycle de vie unique avec une alternance de trophozoïtes actifs phagotrophes et de ramifications osmotrophes ressemblant aux champignons. Sa présence a été fréquemment reportée dans de nombreuses études de métabarcoding du sol, mais cet organisme n'avait jamais été caractérisé auparavant. En revanche, les Hyalospheniformes sont connus depuis les travaux d’Ehrenberg au XIXe siècle. Cependant, leur diversité au niveau de l’espèce reste mal caractérisée. Dans le chapitre 4, nous avons montré que l'espèce emblématique d’amibe à thèque, Nebela militaris, n'appartenait pas au genre Nebela, mais constituait une entité distincte dans l'arbre des Hyalospheniformes. Par conséquent, nous avons érigé le nouveau genre Alabasta pour cette espèce (chapitre 4). De plus, nous avons montré que la diversité des Hyalospheniformes avait été largement sous-estimée. En effet, nos résultats morphologiques et moléculaires ont révélé la présence de plusieurs espèces au sein des genres Apodera, Alocodera et Padaungiella. Cette nouvelle diversité a des impacts sur la biogéographie microbienne, car Apodera vas et Alocodera cockayni étaient auparavant considérées comme deux espèces non-cosmopolites avec des aires de répartition géographique très étendues et de grandes tolérances écologiques. Par conséquent, nous avons montré que la situation était beaucoup plus complexe, suggérant l'existence d'endémismes locaux étroits et de spécialistes écologiques, à l'instar des genres Hyalosphenia et Nebela (chapitre 5). Finalement, nous avons exploré la diversité du genre Nebela le long d’un gradient d’élévation (chapitre 6). Nous avons observé une diminution de l’abondance et de la diversité en haute altitude ce qui correspond à un effet typique de « milieu de domaine ». Notre étude a également révélé plusieurs phylotypes inconnus limités à de hautes altitudes qui semblent présenter une exclusion réciproque avec des taxons généralistes présents à des altitudes inférieures. En conclusion, cette thèse met en évidence que des méthodes moléculaires associées à des observations morphologiques robustes sont efficaces pour révéler et décrire la diversité des Amoebozoa. De plus, ces organismes microbiens possèdent des schémas biogéographiques et macro-écologiques similaires aux animaux, plantes et champignons, dès lors que ces groupes sont étudiés au même rang taxonomique, c'est-à-dire au niveau de l'espèce. ABSTRACT The world eukaryotic diversity is dominated by (mostly) single-celled organisms referred to as protists. Among them, the Amoebozoa are one of the most numerous, diverse and characteristic groups in soil, thus playing important roles in ecosystem functioning. However, their study has been impeded by the difficulty in detecting them and the lack of stable morphological traits in most groups. Nevertheless, some amoebozoans such as the Hyalospheniformes (Arcellinida) are characterized by a self-constructed test (i.e. shell) which facilitates their identification, and are then considered as a suitable model group for investigating diversity patterns of repartition. The recent development of DNA barcoding has helped considerably taxonomic identification, whereas metabarcoding has allowed revealing microbial community composition without observational and cultivation biases. These methods have proved efficient for several microbial groups, but only few studies have been designed for Amoebozoa and available protocols are still rather scarce. The aims of my thesis were then to 1) improve and develop molecular methods to study the amoebozoan diversity and ecology, 2) estimate their taxonomic and functional diversity in the soil, 3) improve the taxonomic and phylogenetic frame for this diversity in order to build a sound basis for further research and 4) characterize the ecological drivers which are likely to influence microbial diversity at local, continental and global scales. We first identified a new molecular marker to survey arcellinids taxa, which proved to be efficient for discriminating closely-related taxa and simultaneously investigating deep relationships among distant taxa (Chapter 2). In addition, we also adapted a metabarcoding protocol with specific COI primers to survey the diversity within the genus Nebela at a fine taxonomical resolution (Chapter 6). Then, we isolated, cultivated and described the first member of a deep-branching environmental clade of Amoebozoa (Chapter 3). This amoeba, one of the smallest amoeboid species described, presents a unique life cycle with an alternation of phagotrophic active trophozoites and osmotrophic fungi-like ramifications. Its presence has been pervasively reported in many soil metabarcoding studies, but this organism had never been characterized. By contrast, Hyalospheniformes are known since the works of Ehrenberg in the 19th century. However, their diversity at the species level remains poorly characterized. In chapter 4, we showed that the iconic testate amoeba species Nebela militaris did not belong to genus Nebela but branched as a separate entity in the Hyalospheniformes tree. Therefore, we erected the new genus Alabasta for this species (Chapter 4). In addition, we demonstrated that Hyalospheniformes diversity had been greatly underestimated. Indeed, our morphological and molecular results have revealed the presence for several species within the genera Apodera, Alocodera and Padaungiella. This new diversity has implications on microbial biogeography as Apodera vas and Alocodera cockayni were previously considered as two non-cosmopolite species with very broad geographical ranges and large ecological tolerances. Furthermore, we showed that the situation was far more complex, suggesting the existence of narrow local endemisms and ecological specialists, similarly to genera Hyalosphenia and Nebela (Chapter 5). Finally, we explored the diversity patterns of the genus Nebela along an elevation gradient (Chapter 6). We observed a decrease of abundance and diversity in high elevation corresponding to a typical mid-domain effect. Our study also revealed several unknown phylotypes restricted to the higher elevation that seemed to present competitive exclusion with the generalist taxa from lower elevation. In conclusion, this thesis highlights that molecular methods associated to robust morphological observations are efficient to reveal and describe the diversity of Amoebozoa. Furthermore, these microbial organisms display biogeographical and macroecological patterns similarly to animals, plants and fungi, when all groups are studied at the same taxonomical rank, i.e. species level.
  • Publication
    Accès libre
    rRNA Phylogeny of Arcellinida (Amoebozoa) Reveals that the Largest Arcellinid Genus, Difflugia Leclerc 1815, is not Monophyletic
    (2012)
    Gomaa, Fatma
    ;
    Todorov, Milcho
    ;
    Heger, Thierry J.
    ;
    ;
    The systematics of lobose testate amoebae (Arcellinida), a diverse group of shelled free-living unicellular eukaryotes, is still mostly based on morphological criteria such as shell shape and composition. Few molecular phylogenetic studies have been performed on these organisms to date, and their phylogeny suffers from typical under-sampling artefacts, resulting in a still mostly unresolved tree. In order to clarify the phylogenetic relationships among arcellinid testate amoebae at the inter-generic and inter-specific level, and to evaluate the validity of the criteria used for taxonomy, we amplified and sequenced the SSU rRNA gene of nine taxa - Difflugia bacillariarum, D. hiraethogii, D. acuminata, D. lanceolata, D. achlora, Bullinularia gracilis, Netzelia oviformis, Physochila griseola and Cryptodifflugia oviformis. Our results, combined with existing data demonstrate the following: 1) Most arcellinids are divided into two major clades, 2) the genus Difflugia is not monophyletic, and the genera Netzelia and Arcella are closely related, and 3) Cryptodifflugia branches at the base of the Arcellinida clade. These results contradict the traditional taxonomy based on shell composition, and emphasize the importance of general shell shape in the taxonomy of arcellinid testate amoebae.
  • Publication
    Accès libre
    Molecular phylogeny and taxonomy of Testate amoebae (protist) and host-symbiont evolutionary relationships within mixotrophic taxa
    (2012)
    Gomaa, Fatma
    ;
    ;
    Les recherches en phylogénie moléculaire ont considérablement avancé notre compréhension des relations entre eucaryotes. Les classifications récentes placent les protistes amoeboides dans plus de 30 lignées au sein des Amoebozoa, Rhizaria, Stramenopiles, Opisthokonta, et Excavata. Parmi celles-ci, certaines branches ont développé des thèques ou coquilles, souvent ornementées et caractéristiques qui ont été utilisées depuis plus de 150 ans comme caractère diagnostique pour décrire plus de 2000 espèces. Les thécamoebiens sont caractérisés par des pseudopodes lobés ou filamenteux et une thèque à une chambre pouvant être agglutinée, protéinique, calcaire ou siliceuse. L’acquisition de la thèque s’est faite plusieurs fois de manière indépendante au cours de l’évolution. De plus, et malgré la longue tradition de recherche en taxonomie sur les thécamoebiens, les relations entre les différents taxons demeurent largement non-résolue, l’affiliation phylogénétique de certains genres restant inconnue.
    Le but de cette thèse était de construire une phylogénie fiable du plus grand ordre d’amibes, les Arcellinida, en utilisant des séquences du gène SSU rRNA et des analyses par microscopie électronique (chapitres 2 et 5). Les résultats révèlent des contradictions drastiques avec la taxonomie traditionnelle. Le genre Difflugia, le plus grand genre des Arcellinida, n’est pas monophylétique et est divisé en deux clades bien distincts regroupant respectivement les espèces allongées/pyriformes et les espèces globulaires. Le genre Netzelia est phylogénétiquement proche des Difflugia globulaires malgré les différences de structures de leur thèque.
    Par ailleurs, les Arcellinida démontrent un conservatisme morphologique marqué; les types morphologiques similaires correspondant possiblement à des taxons génétiquement très distants. Nous démontrons la possibilité d’une évolution morphologique rapide an sein de ce groupe. Difflugia tuberspinifera, une espèce endémique d’Asie possède deux morpho-types (avec et sans cornes) possédant des séquences similaire du gène SSU rRNA gene (99.8%) et des introns et insertions identiques, mais pouvant toutefois être discriminés sur la base de leur séquences. Ceci suggère une évolution morphologique récente, possiblement liée à des facteurs écologiques à déterminer.
    Nous avons déterminé la position phylogénétique des deux genresincertae sedis bien connus de la famille des Amphitrematidae, Amphitrema et Archerella (chapitre 3), qui de manière surprenante sont apparentés Labyrinthulomycetes (Stramenopiles), formant ainsi un nouveau clade de thécamoebiens indépendants des autres (c.à.d. Amoebozoa & Rhizaria). Cette étude illustre également que la taxonomie et la phylogénie des protistes en général est d’une importance cruciale pour comprendre l’évolution de la diversité des eucaryotes.
    Les thécamoebiens forment souvent des associations avec les organismes photosynthétiques dont l’identité demeure toutefois inconnue. Nous avons identifié les symbiontes de quatre thécamoebiens différents sur la base du gène chloroplastique rbcL (ribulose-1, 5-diphosphate carboxylase/oxygénase grande sub-unité) utilisé comme gène de barcoding. La majorité des symbiontes de thécamoebiens ont pu être raisonnablement associés à une seule espèce, malgré le fait que leurs hôtes étaient taxonomiquement très distants. Fait intéressant, les Chlorelles symbiontes des thécamoebiens étaient très proches de Chlorella variabilis ainsi que des symbiontes de Paramecium bursaria. A la lumière de ces résultats, nous proposons un scénario d’évolution de l’association entre hôtes hétérotrophes et leur symbiontes photosynthétiques.
    De manière générale, ma thèse illustre qu’une phylogénie fiable des thécamobiens basée sur les approches morphologiques et moléculaires est non-seulement un prérequis essentiel pour comprendre leur évolution, mais contribuera aussi à résoudre des débats concernant leur diversité et leur biogéographie, et en augmentera en général leur utilisé comme groupe modèle d’organismes pour les recherches en écologie appliquée., Molecular phylogenetic studies have considerably advanced our understanding of the relationships among eukaryotes. In recent classification schemes, amoeboid protists appeared scattered in more than 30 lineages within Amoebozoa, Rhizaria, Stramenopiles, Opisthokonta, and Excavata. Amongst these, some branches tended to develop a test or shell, often ornamented and conspicuous, which has been used for more than 150 years as a diagnostic character to describe more than 2000 species. Testate amoebae are characterized by lobose or filose pseudopodia and one chamber shell that can be agglutinated, proteinaceous, calcareous or siliceous. The acquisition of the shell happened several times independently in the course of evolution. Furthermore, and in spite of the long taxonomic tradition in testate amoebae research, the relationships between the different taxa remained largely unresolved, some genera remaining still without known phylogenetic affiliation.
    In this thesis, we aimed at constructing a reliable phylogeny of the largest testate amoebae order, the Arcellinida, using SSU rRNA gene sequences and scanning electron microscopy analyses (chapters 2 and 5). Our results revealed drastic contradictions with traditional taxonomy. Genus Difflugia, the largest Arcellinid genus appeared not monophyletic, and divided in two major and distantly related clades that grouped respectively the elongated/pyriform and the globular species. Genus Netzelia was phylogenetically very closely related to the globular Difflugia despite the inconsistencies in their shell structure.
    In addition, Arcellinida tended to show an important morphological conservatism, and closely related morphologies can possibly hide important genetic distances. We also demonstrated that fast morphological evolution could also be possible in this group. Difflugia tuberspinifera, an Asian endemic species had two morphotypes (spiny and spineless) which shared highly similar SSU rRNA gene sequences (99.8%) and identical introns and insertions, but could be nevertheless discriminated on the base of their sequences. This result suggested a recent morphological evolution, presumably due to some differing ecological factors that still need to be clarified.
    We determined also the phylogenetic position of two well known incertae sedis genera of family Amphitremida, Amphitrema and Archerella (chapter 3), which appeared surprisingly to be related to Labyrinthulomycetes (Stramenopiles), thus forming a new clade of testate amoebae independent from others (i.e Amoebozoa, Rhizaria). This study also illustrated that accurate taxonomy and phylogeny of protists in general is of crucial important for understanding the evolution and diversity of eukaryotes.
    Testate amoebae have been also often found in association with some photosynthetic organisms whose identity remained unknown. We identified the symbionts of four different testate amoeba species using the chloroplastic gene rbcL (ribulose-1, 5-diphosphate carboxylase/oxygenase large subunit) as a barcoding gene. The majority of testate amoeba symbionts formed a consistent group with very few sequence diversity that could be reasonably associated to a single species, in spite of the fact that host species were taxonomically distantly related. Interestingly, testate amoebae Chlorella symbionts were very closely related to Chlorella variabilis and to Paramecium bursaria Chlorella symbionts. In the light of these results, we proposed a general evolutionary scenario for association between heterotrophic hosts and their photosynthetic symbionts.
    Overall, my thesis illustrated that the reliable phylogeny of testate amoebae based on molecular and morphological approaches is not only essential prerequisite for understanding their evolution, but it also will contribute in resolving debates concerning their diversity and biogeography, and in general will increase their utility as a model group of organisms for applied ecological research.
  • Publication
    Métadonnées seulement
    Ribosomal RNA genes challenge the monophyly of the hyalospheniidae (Amoebozoa : Arcellinida)
    (2008) ;
    Heger, Thierry J
    ;
    Ekelund, Flemming
    ;
    Lamentowicz, Mariusz
    ;
    To date only five partial and two complete SSU rRNA gene sequences are available for the lobose testate amoebae (Arcellinida). Consequently, the phylogenetic relationships among taxa and the definition of species are still largely dependant on morphological characters of uncertain value, which causes confusion in the phylogeny, taxonomy and the debate on cosmopolitanism of free-living protists. Here we present a SSU rRNA-based phylogeny of the Hyalospheniidae including the most common species. Similar to the filose testate amoebae of the order Euglyphida the most basal clades have a terminal aperture; the ventral position of the pseudostome appears to be a derived character. Family Hyalospheniidae appears paraphyletic and is separated into three clades: (1) Heleopera sphagni, (2) Heleopera rosea and Argynnia dentistoma and (3) the rest of the species from genera Apodera, Hyalosphenia, Porosia and Nebela. Our data support the validity of morphological characters used to define species among the Hyalospheniidae and even suggest that taxa described as varieties may deserve the rank of species (e.g. N. penardiana var. minor). Finally our results suggest that the genera Hyalosphenia and Nebela are paraphyletic, and that Porosia bigibbosa branches inside the main Nebela clade. (c) 2007 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    Ribosomal RNA Genes Challenge the Monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida)
    (2008) ;
    Heger, Thierry J.
    ;
    Ekelund, Flemming
    ;
    Lamentowicz, Mariucz
    ;
    To date only five partial and two complete SSU rRNA gene sequences are available for the lobose testate amoebae (Arcellinida). Consequently, the phylogenetic relationships among taxa and the definition of species are still largely dependant on morphological characters of uncertain value, which causes confusion in the phylogeny, taxonomy and the debate on cosmopolitanism of free-living protists. Here we present a SSU rRNA-based phylogeny of the Hyalospheniidae including the most common species. Similar to the filose testate amoebae of the order Euglyphida the most basal clades have a terminal aperture; the ventral position of the pseudostome appears to be a derived character. Family Hyalospheniidae appears paraphyletic and is separated into three clades: (1) Heleopera sphagni, (2) Heleopera rosea and Argynnia dentistoma and (3) the rest of the species from genera Apodera, Hyalosphenia, Porosia and Nebela. Our data support the validity of morphological characters used to define species among the Hyalospheniidae and even suggest that taxa described as varieties may deserve the rank of species (e.g. N. penardiana var. minor). Finally our results suggest that the genera Hyalosphenia and Nebela are paraphyletic, and that Porosia bigibbosa branches inside the main Nebela clade.
  • Publication
    Métadonnées seulement
    The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa
    (2005)
    Nikolaev, Sergey I
    ;
    ;
    Petrov, Nikolay B
    ;
    Berney, Cédric
    ;
    Fahrni, José
    ;
    Pawlowski, Jan
    Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida. (c) 2005 Published by Elsevier GmbH.
  • Publication
    Accès libre
    The Testate Lobose Amoebae (Order Arcellinida Kent, 1880) Finally Find their Home within Amoebozoa
    (2005)
    Nikolaev, Sergey I.
    ;
    ;
    Petrov, Nikolay B.
    ;
    Berney, Cédric
    ;
    Fahrni, José
    ;
    Pawlowski, Jan
    Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida.
  • Publication
    Accès libre
    Checklist, diversity and distribution of testate amoebae in Chile
    Fernández, Leonardo D
    ;
    ;
    Bringing together more than 170 years of data, this study represents the first attempt to construct a species checklist and analyze the diversity and distribution of testate amoebae in Chile, a country that encompasses the southwestern region of South America, countless islands and part of the Antarctic. In Chile, known diversity includes 416 testate amoeba taxa (64 genera, 352 infrageneric taxa), 24 of which are here reported for the first time. Species−accumulation plots show that in Chile, the number of testate amoeba species reported has been continually increasing since the mid-19th century without leveling off. Testate amoebae have been recorded in 37 different habitats, though they are more diverse in peatlands and rainforest soils. Only 11% of species are widespread in continental Chile, while the remaining 89% of the species exhibit medium or short latitudinal distribution ranges. Also, species composition of insular Chile and the Chilean Antarctic territory is a depauperated subset of that found in continental Chile. Nearly, the 10% of the species reported here are endemic to Chile and many of them are distributed only within the so-called Chilean biodiversity hotspot (ca. 25°S-47°S). These findings are here thoroughly discussed in a biogeographical and evolutionary context.
  • Publication
    Accès libre
    The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems
    Lahr, Daniel J.G
    ;
    Bosak, Tanja
    ;
    ;
    The terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells. The two are unrelated phylogenetically and acquired biomineralizing capabilities independently. Hyalosphenids, a group within arcellinids, are predators of euglyphids.We demonstrate that hyalosphenids can construct shells using silica scales mineralized by the euglyphids. Parsimony analyses of the current hyalosphenid phylogeny indicate that the ability to “steal” euglyphid scales is most likely ancestral in hyalosphenids, implying that euglyphids should be older than hyalosphenids. However, exactly when euglyphids arose is uncertain. Current fossil record contains unambiguous euglyphid fossils that are as old as 50 million years, but older fossils are scarce and difficult to interpret. Poor taxon sampling of euglyphids has also prevented the development of molecular clocks. Here, we present a novel molecular clock reconstruction for arcellinids and consider the uncertainties due to various previously used calibration points. The new molecular clock puts the origin of hyalosphenids in the early Carboniferous (~370 mya). Notably, this estimate coincides with the widespread colonization of land by Si-accumulating plants, suggesting possible links between the evolution of Arcellinid testate amoebae and the expansion of terrestrial habitats rich in organic matter and bioavailable Si.
  • Publication
    Accès libre
    Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida,Hyalospheniidae), a new species described from a Swiss raised bog
    We describe here a new species of sphagnicolous testate amoeba found abundantly in the forested part of the Le Cachot peatland (Jura Mountains, Neuchâtel, Switzerland) based on microscopical observations (LM, SEM). The new species, called Nebela gimlii was placed in a phylogenetic tree based on mitochondrial cytochrome oxidase sequences (COI), and branched robustly within the N. collaris complex next to the morphologically similar N. guttata and N. tincta. It is however genetically clearly distinct from these two species, and differs morphologically from them by its smaller size and stouter shape of the shell. This new species completes the phylogeny of the Nebela collaris species complex, with now eight species described, mostly from peatlands and acidic forest litter, and further demonstrates the existence of an unknown diversity within testate amoebae. Improving the taxonomy of testate amoebae in peatlands and clarifying the ecology of newly discovered species should make these organisms even more valuable as bioindicator and for palaeoecological reconstruction.