Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table
    ;
    Mulot, Matthieu, Laboratory of Soil Diversity, University of Neuchâtel, Switzerland
    ;
    Biomonitoring tools are useful to assess the impact of environmental changes on the functioning of ecosystems. Existing tools mostly require species identification, thus allowing to estimating changes in biodiversity, and possibly inferring ecosystem functioning, using functional diversity and traits based approaches.
    Testate amoebae are good indicators of surface moisture conditions in Sphagnum peatlands and are routinely used in palaeoecology. Their shells (tests), on which identification is based, can also be used to define functional traits and thus to infer changes in ecosystem functioning.
    We investigated the response of testate amoeba communities to manipulated water table depth (wet: −4 cm, intermediate: −15 cm, and dry: −25 cm) over time (seven time points, 19 months) using mesocosms by comparing two approaches: community structure and functional traits responses, using a combination of morphological (biovolume, length, aperture size and position) and physiological (mixotrophy/heterotrophy, shell material) traits.
    This is the first study investigating the effect of water table depth on testate amoeba assemblages over time using a mesocosm approach. Taxonomical and functional approaches showed similar response patterns, confirming that water level acted as a strong environmental filter. After one year Hyalosphenia papilio decreased in the dry treatment, and the community structure shifted towards a dominance of dry indicators (Nebela tincta complex, Corythion dubium, Euglypha compressa) and the selected functional traits (smaller, heterotrophic, compressed species, with a ventral aperture) corresponded to drought adaptations.
    In line with recent observational and transfer function studies exploring the use of testate amoebae functional traits, our experimental results illustrate how well-selected traits could be used to monitor the impact of present and past climatic changes on Sphagnum peatlands.
  • Publication
    Accès libre
    Soil protistology rebooted: 30 fundamental questions to start with
    Geisen, Stefan
    ;
    ;
    Wilkinson, David M
    ;
    Adl, Sina
    ;
    Bonkowski, Michael
    ;
    Brown, Matthew W
    ;
    Fiore-Donno, Anna Maria
    ;
    ;
    Jassey, Vincent E.J
    ;
    Krashevska, Valentyna
    ;
    Lahr, Daniel J.G
    ;
    Marcisz, Katarzyna
    ;
    ;
    Payne, Richard
    ;
    ;
    Anderson, Roger O
    ;
    Charman, Dan J
    ;
    Ekelund, Flemming
    ;
    Griffiths, Bryan S
    ;
    Rønn, Regin
    ;
    Smirnov, Alexey
    ;
    Bass, David
    ;
    ;
    Berney, Cédric
    ;
    ;
    Blandenier, Quentin
    ;
    Chatzinotas, Antonis
    ;
    Clarholm, Marianne
    ;
    Dunthorn, Micah
    ;
    Feest, Alan
    ;
    Fernández, Leonardo D
    ;
    Foissner, Wilhelm
    ;
    ;
    Gentekaki, Eleni
    ;
    Hájek, Michal
    ;
    Helder, Johannes
    ;
    Jousset, Alexandre
    ;
    Koller, Robert
    ;
    Kumar, Santosh
    ;
    La Terza, Antonietta
    ;
    Lamentowicz, Mariusz
    ;
    Mazei, Yuri
    ;
    Santos, Susana S
    ;
    Seppey, Christophe V.W
    ;
    Spiegel, Frederick W
    ;
    Walochnik, Julia
    ;
    Winding, Anne
    ;
    Protists are the most diverse eukaryotes. These microbes are keystone organisms of soil ecosystems and regulate essential processes of soil fertility such as nutrient cycling and plant growth. Despite this, protists have received little scientific attention, especially compared to bacteria, fungi and nematodes in soil studies. Recent methodological advances, particularly in molecular biology techniques, have made the study of soil protists more accessible, and have created a resurgence of interest in soil protistology. This ongoing revolution now enables comprehensive investigations of the structure and functioning of soil protist communities, paving the way to a new era in soil biology. Instead of providing an exhaustive review, we provide a synthesis of research gaps that should be prioritized in future studies of soil protistology to guide this rapidly developing research area. Based on a synthesis of expert opinion we propose 30 key questions covering a broad range of topics including evolution, phylogenetics, functional ecology, macroecology, paleoecology, and methodologies. These questions highlight a diversity of topics that will establish soil protistology as a hub discipline connecting different fundamental and applied fields such as ecology, biogeography, evolution, plant-microbe interactions, agronomy, and conservation biology. We are convinced that soil protistology has the potential to be one of the most exciting frontiers in biology.