Options
Mitchell, Edward
Résultat de la recherche
Effects of decomposing cadavers on soil nematode communities over a one-year period
2016-12-1, Szelecz, Ildikò, Sorge, Franziska, Seppey, Christophe, Mulot, Matthieu, Steel, Hanne, Neilson, Roy, Griffiths, Bryan S., Amendt, Jens, Mitchell, Edward
In terrestrial ecosystems decomposing cadavers act as resource patches affecting nutrient cycling and soil communities, but the effects on soil communities are not well known. In this study we investigated nematode community response to decomposing pig cadavers (Sus scrofa) over a one-year period. As nematodes play key roles in soil food webs and are known to respond to disturbances and nutrient enrichment, we hypothesised that they would respond to decomposing cadavers and that this response would change over time. We compared the temporal patterns of nematode density and community structure under pig cadavers, either placed directly on the ground or hung 1 m aboveground (for effects of cadaveric fluids only), with two controls, i.e., bare soil and bags filled with soil placed on the ground (fake pigs e for microclimatic effects only). In the control and fake pig treatments nematode densities, community patterns and maturity indices did not change significantly. In contrast, density increased significantly underneath the ground and hanging pigs two weeks after the beginning of the experiment, and nematode family richness, Simpson diversity and maturity index were sgnificantly reduced in the cadaver treatments. Most nematode families responded negatively to cadavers with the notable exceptions of Rhabditidae, Neodiplogasteridae and Diplogasteroididae. The latter two were found exclusively underneath the decomposing cadavers and are promising bioindicators of vertebrate cadaver decomposition. Even though diversity, density and communities were recovering after one year, the impact of cadavers was still significant for the maturity index. These contrasting patterns illustrate how decomposing cadavers contribute to increasing local biodiversity and suggest that soil nematodes could be used as a tool to document the presence of a decomposing cadaver, or to estimate the time elapsed since death (post-mortem interval). Patterns should, however, be compared in different settings and seasons before such a tool can be validated.
Can soil testate amoebae be used for estimating the time since death? A field experiment in a deciduous forest
2014, Szelecz, Ildikò, Fournier, Bertrand, Seppey, Christophe, Amendt, Jens, Mitchell, Edward
Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4-6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchatel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers -and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
2013, Kosakyan, Anush, Gomaa, Fatma, Mitchell, Edward, Heger, Thierry J., Lara, Enrique
Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH
2013, Mitchell, Edward, Payne, Richard J., van der Knaap, Willem O., Lamentowicz, Lukasz, Gabka, Maciej, Lamentowicz, Mariusz
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWF were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data. (C) 2012 University of Washington. Published by Elsevier Inc. All rights reserved.
Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high-throughput sequencing
2016-3-1, Seppey, Christophe, Fournier, Bertrand, Szelecz, Ildikò, Singer, David, Mitchell, Edward, Lara, Enrique
Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro- environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.
Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions
2013, Jassey, Vincent E. J., Chiapusio, Genevieve, Binet, Philippe, Buttler, Alexandre, Laggoun-Defarge, Fatima, Delarue, Frederic, Bernard, Nadine, Mitchell, Edward, Toussaint, Marie-Laure, Francez, Andre-Jean, Gilbert, Daniel
Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands
Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction
2013, Qin, Yangmin, Mitchell, Edward, Lamentowicz, Mariusz, Payne, Richard J., Lara, Enrique, Gu, Yansheng, Huang, Xianyu, Wang, Hongmei
Testate amoebae are a diverse and abundant group of protozoa that constitute a large proportion of biomass in many ecosystems and probably fill important roles in ecosystem function. These microorganisms have attracted the interest of paleoecologists because the preserved shells of testate amoebae and their known hydrological preferences enable reconstruction of past hydrological change. In ombrotrophic peatlands, surface wetness reflects hydroclimate, so testate amoebae can play an important role in reconstruction of Holocene climate change. Previous studies, however, have been geographically restricted, mostly to North America and Europe. We studied the ecology of testate amoebae in peatlands from central China in relation to hydrology, pH and metal concentrations. We found that testate amoeba community structure was correlated with depth to water table (DWT) and that the hydrological preferences of species generally matched those of previous studies. We developed a weighted average DWT transfer function that enables prediction of water table depth with a cross-validated mean error of < 5 cm. Our results demonstrate the potential for using testate amoebae to reconstruct paleohydrology in China. Such studies could contribute to our understanding of Holocene climate changes in China, particularly regarding past Asian monsoon activity.
Indicators for taxonomic and functional aspects of biodiversity in vineyard agro-ecosystem of Southern Switzerland
2014-3-11, Trivellone, Valeria, Schoenenberger, Nicola, Bellosi, Bruno, Jermini, Mauro, de Bello, Francesco, Mitchell, Edward, Moretti, Marco
t is widely accepted that the concept of biodiversity embraces two essential and complementary com- ponents: taxonomic and functional diversity. Our goal is to produce a list of plant species predictive of high taxonomic and functional biodiversity values and discuss their use within biodiversity monitoring programmes. We selected a representative sample of 48 vineyard areas from Southern Switzerland, and vegetation from the ground cover was sampled from within a total of 120 sampling plots. We con- sidered ten widely used functional traits and selected six taxonomic and functional indices. We applied a two-step analysis: (i) using Threshold Indicator Taxa Analysis (TITAN) based on the above mentioned bio- diversity indices, we defined 3 groups of sampling plots with low (L), medium (M) and high (H) biodiver- sity values; (ii) using the Indicator Value analysis, we identify indicator species that are significantly associated with the above-mentioned groups and their combinations. In total, 259 vascular plants were identified across the sampling plots. As a whole, 52 species were significant indicators for groups with high and mid-to-high biodiversity values. Out of all indicator species, 24 (46%) were exclusively selected by functional biodiversity indices whereas only 10 (19%) were associated with taxonomic indices. Eigh- teen (35% of the total) species were selected by both types of indices. We point out that indicator species associated with two different aspects of biodiversity show a high degree of complementarity. Our results emphasize the need to consider functional aspects of biodiversity in diversity-conservation strategies when the objectives are to preserve both taxonomic diversity and ecosystem functioning.
Holarctic phylogeography of the testate amoeba Hyalosphenia papilio (Amoebozoa: Arcellinida) reveals extensive genetic diversity explained more by environment than dispersal limitation
2013, Heger, Thierry J., Mitchell, Edward, Leander, Brian S.
Although free-living protists play essential roles in aquatic and soil ecology, little is known about their diversity and phylogeography, especially in terrestrial ecosystems. We used mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences to investigate the genetic diversity and phylogeography of the testate amoeba morphospecies Hyalosphenia papilio in 42 Sphagnum (moss)-dominated peatlands in North America, Europe and Asia. Based on 1% sequence divergence threshold, our results from single-cell PCRs of 301 individuals revealed 12 different genetic lineages and both the general mixed Yule-coalescent (GMYC) model and the automatic barcode gap discovery (ABGD) methods largely support the hypothesis that these 12 H.papilio lineages correspond to evolutionary independent units (i.e. cryptic species). Our data also showed a high degree of genetic heterogeneity within different geographical regions. Furthermore, we used variation partitioning based on partial redundancy analyses (pRDA) to evaluate the contributions of climate and dispersal limitations on the distribution patterns of the different genetic lineages. The largest fraction of the variation in genetic lineage distribution was attributed to purely climatic factors (21%), followed by the joint effect of spatial and bioclimatic factors (13%), and a purely spatial effect (3%). Therefore, these data suggest that the distribution patterns of H.papilio genetic lineages in the Northern Hemisphere are more influenced by climatic conditions than by dispersal limitations.
To What Extent Do Food Preferences Explain the Trophic Position of Heterotrophic and Mixotrophic Microbial Consumers in a Sphagnum Peatland?
2013, Jassey, Vincent E. J., Meyer, Caroline, Dupuy, Christine, Bernard, Nadine, Mitchell, Edward, Toussaint, Marie-Laure, Metian, Marc, Chatelain, Auriel P., Gilbert, Daniel
Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (delta C-13 and delta N-15) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.