Voici les éléments 1 - 4 sur 4
  • Publication
    Accès libre
    Litter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland
    (2010)
    Siegenthaler, Andy
    ;
    Buttler, Alexandre
    ;
    Bragazza, Luca
    ;
    van der Heijden, Edwin
    ;
    Grosvernier, Philippe
    ;
    ;
    Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.
  • Publication
    Accès libre
    Plant Litter Decomposition and Nutrient Release in Peatlands
    (2008)
    Bragazza, Luca
    ;
    Buttler, Alexandre
    ;
    Siegenthaler, Andy
    ;
    Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.
  • Publication
    Accès libre
    Testate Amoebae (Protista) Communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): Relationships with Altitude, and Moss Elemental Chemistry
    (2004) ;
    Bragazza, Luca
    ;
    Gerdol, Renato
    We studied the testate amoebae in the moss Hylocomium splendens along an altitudinal gradient from 1000 to 2200 m asl. in the south-eastern Alps of Italy in relation to micro- and macro-nutrient content of moss plants. Three mountainous areas were chosen, two of them characterised by calcareous bedrock, the third by siliceous bedrock. A total of 25 testate amoebae taxa were recorded, with a mean species richness of 9.3 per sampling plot. In a canonical correspondence analysis, 63.1% of the variation in the amoebae data was explained by moss tissue chemistry, namely by C, P, Ca, Mg, Al, Fe, and Na content and a binary site variable. We interpreted this result as an indirect effect of moss chemistry on testate amoebae through an influence on prey organisms. Although two species responded to altitude, there was no overall significant relationship between testate amoebae diversity or community structure and altitude, presumably because our sampling protocol aimed at minimizing the variability due to vegetation types and soil heterogeneity. This suggests that previous evidence of altitudinal or latitudinal effects on testate amoebae diversity may at least in part be due to a sampling bias, namely differences in soil type or moss species sampled.
  • Publication
    Accès libre
    Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
    ; ;
    Payne, Richard J
    ;
    ;
    Duckert, Clément
    ;
    Fernández, Leonardo D
    ;
    ;
    Hernández, Cristián E
    ;
    Granath, Gustaf
    ;
    Rydin, Håkan
    ;
    Bragazza, Luca
    ;
    Koronatova, Natalia G
    ;
    Goia, Irina
    ;
    Harris, Lorna I
    ;
    Kajukało, Katarzyna
    ;
    ;
    Lamentowicz, Mariusz
    ;
    Kosykh, Natalia P
    ;
    Vellak, Kai
    ;
    Recent studies show that soil eukaryotic diversity is immense and dominated by micro‐organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro‐organisms. Major diversification events in multicellular organisms have often been attributed to long‐term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum‐dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro‐organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.