Options
Semeraro, Sarah
Nom
Semeraro, Sarah
Affiliation principale
Fonction
Ancien.ne collaborteur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreSolar radiation explains litter degradation along alpine elevation gradients better than other climatic or edaphic parameters(2023-04-27)
; ;Pascal Kipf; Organic matter (OM) decomposition has been shown to vary across ecosystems, suggesting that variation in local ecological conditions influences this process. A better understanding of the ecological factors driving OM decomposition rates will allow to better predict the effect of ecosystem changes on the carbon cycle. While temperature and humidity have been put forward as the main drivers of OM decomposition, the concomitant role of other ecosystem properties, such as soil physicochemical properties, and local microbial communities, remains to be investigated within large-scale ecological gradients. To address this gap, we measured the decomposition of a standardized OM source – green tea and rooibos tea – across 24 sites spread within a full factorial design including elevation and exposition, and across two distinct bioclimatic regions in the Swiss Alps. By analyzing OM decomposition via 19 climatic, edaphic or soil microbial activity-related variables, which strongly varied across sites, we identified solar radiation as the primary source of variation of both green and rooibos teabags decomposition rate. This study thus highlights that while most variables, such as temperature or humidity, as well as soil microbial activity, do impact decomposition process, in combination with the measured pedo-climatic niche, solar radiation, very likely by means of indirect effects, best captures variation in OM degradation. For instance, high solar radiation might favor photodegradation, in turn speeding up the decomposition activity of the local microbial communities. Future work should thus disentangle the synergistic effects of the unique local microbial community and solar radiation on OM decomposition across different habitats. - PublicationAccès libreRelative contribution of high and low elevation soil microbes and nematodes to ecosystem functioning(2022-1-7)
; ; ;Sánchez-Moreno, Sara ;Puissant, Jérémy ;Goodall, Tim ;Griffiths, RobertEcosystem productivity is largely dependent on soil nutrient cycling which, in turn, is driven by decomposition rates governed by locally adapted below-ground microbial and soil communities. How climate change will impact soil biota and the associated ecosystem functioning, however, remains largely an open question. To address this gap, we first characterized differences in soil microbial and nematode communities as well as functional characteristics from soils collected from the foothills or in sub-alpine elevations of the Alps. We next performed a full-factorial reciprocal transplant common garden experiment at two elevations, and asked whether elevation-related functional and taxonomic differences are maintained or can be altered depending on the local climatic conditions. For this, we separately transplanted soil microbial and nematode communities from low and high elevation in their home or opposite elevation in pots added with a common plant community. We found evidence for taxonomic and functional differentiation of the microbial and nematode communities when collected at high or low elevation. Specifically, we observed a decrease in microbial diversity and activity at high elevation, and additionally, through nematodes' functional characterization, we found increased fungal-dominated energy channels at high elevation. Moreover, according to the reciprocal transplant experiment, while we found little effect of soil biodiversity change based on elevation of origin on plant growth and plant community composition, soils inoculated with microbes originating from low elevation respired more than those originating from high elevation, particularly when at low elevation. This observation correlates well with the observed faster carbon degradation rates by the low elevation microbial communities. Climate change can reshuffle soil communities depending on organism-specific variation in range expansion, ultimately affecting soil fertility and carbon-cycle dynamics.