Voici les éléments 1 - 10 sur 13
  • Publication
    Accès libre
    Comparison of three recent discrete stochastic inversion methods and influence of the prior choice
    Groundwater flow depends on subsurface heterogeneity, which often calls for categorical fields to represent different geological facies. The knowledge about subsurface is however limited and often provided indirectly by state variables, such as hydraulic heads of contaminant concentrations. In such cases, solving a categorical inverse problem is an important step in subsurface modeling. In this work, we present and compare three recent inverse frameworks: Posterior Population Expansion (PoPEx), Ensemble Smoother with Multiple Data Assimilation (ESMDA), and DREAM-ZS (a Markov chain Monte Carlo sampler). PoPEx and ESDMA are used with Multiple-point statistics (MPS) as geostatistical engines, and DREAM-ZS is used with a Wasserstein generative adversarial network (WGAN). The three inversion methods are tested on a synthetic example of a pumping test in a fluvial channelized aquifer. Moreover, the inverse problem is solved three times with each method, each time using a different training image to check the performance of the methods with different geological priors. To assess the quality of the results, we propose a framework based on continuous ranked probability score (CRPS), which compares single true values with predictive distributions. All methods performed well when using the training image used to create the reference, but their performances were degraded with the alternative training images. PoPEx produced the least geological artifacts but presented a rather slow convergence. ESMDA showed initially a very fast convergence which reaches a plateau, contrary to the remaining methods. DREAM-ZS was overly confident in placing some incorrect geological features but outperformed the other methods in terms of convergence.
  • Publication
    Accès libre
    A parsimonious parametrization of the Direct Sampling algorithm for multiple-point statistical simulations
    Multiple-point statistics algorithms allow modeling spatial variability from training images. Among these techniques, the Direct Sampling (DS) algorithm has advanced capabilities, such as multivariate simulations, treatment of non-stationarity, multi-resolution capabilities, conditioning by inequality or connectivity data. However, finding the right trade-off between computing time and simulation quality requires tuning three main parameters, which can be complicated since simulation time and quality are affected by these parameters in a complex manner. To facilitate the parameter selection, we propose the Direct Sampling Best Candidate (DSBC) parametrization approach. It consists in setting the distance threshold to 0. The two other parameters are kept (the number of neighbors and the scan fraction) as well as all the advantages of DS. We present three test cases that prove that the DSBC approach allows to identify efficiently parameters leading to comparable or better quality and computational time than the standard DS parametrization. We conclude that the DSBC approach could be used as a default mode when using DS, and that the standard parametrization should only be used when the DSBC approach is not sufficient.
  • Publication
    Accès libre
    Efficiency of template matching methods for Multiple-Point Statistics simulations
    (2021-8)
    Sharifzadeh Lari, Mansoureh
    ;
    ;
    Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise. Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.
  • Publication
    Accès libre
    Missing data simulation inside flow rate time-series using multiple-point statistics
    The direct sampling (DS) multiple-point statistical technique is proposed as a non-parametric missing data simulator for hydrological flow rate time-series. The algorithm makes use of the patterns contained inside a training data set to reproduce the complexity of the missing data. The proposed setup is tested in the reconstruction of a flow rate time-series while considering several missing data scenarios, as well as a comparative test against a time-series model of type ARMAX. The results show that DS generates more realistic simulations than ARMAX, better recovering the statistical content of the missing data. The predictive power of both techniques is much increased when a correlated flow rate time-series is used, but DS can also use incomplete auxiliary time-series, with a comparable prediction power. This makes the technique a handy simulation tool for practitioners dealing with incomplete data sets.
  • Publication
    Accès libre
    Integrating aerial geophysical data in multiple-point statistics simulations to assist groundwater flow models
    (2015-10)
    Dickson, Neil
    ;
    Comte, Jean-Christophe
    ;
    ; ;
    McKinley, Jennifer
    ;
    Ofterdinger, Ulrich
    The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively `noisy' magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.
  • Publication
    Métadonnées seulement
    Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images
    (2014-7)
    LochbĂĽhler, Tobias
    ;
    ; ;
    Linde, Niklas
    Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.
  • Publication
    Accès libre
    Simulation of braided river elevation model time series with multiple-point statistics
    A new method is proposed to generate successive topographies in a braided river system. Indeed, braided river morphology models are a key factor influencing river-aquifer interactions and have repercussions in ecosystems, flood risk or water management. It is essentially based on multivariate multiple-point statistics simulations and digital elevation models as training data sets. On the one hand, airborne photography and LIDAR acquired at successive time steps have contributed to a better understanding of the geomorphological processes although the available data are sparse over time and river scales. On the other hand, geostatistics provide simulation tools for multiple and continuous variables, which allow the exploration of the uncertainty of many assumption scenarios. Illustration of the approach demonstrates the ability of multiple-point statistics to produce realistic topographies from the information provided by digital elevation models at two time steps.
  • Publication
    Métadonnées seulement
    Addressing conditioning data in multiple-point statistics simulation algorithms based on a multiple grid approach
    (2014-2) ;
    Malinverni, Duccio
    Multiple-point statistics (MPS) allows simulations reproducing structures of a conceptual model given by a training image (TI) to be generated within a stochastic framework. In classical implementations, fixed search templates are used to retrieve the patterns from the TI. A multiple grid approach allows the large-scale structures present in the TI to be captured, while keeping the search template small. The technique consists in decomposing the simulation grid into several grid levels: One grid level is composed of each second node of the grid level one rank finer. Then each grid level is successively simulated by using the corresponding rescaled search template from the coarse level to the fine level (the simulation grid itself). For a conditional simulation, a basic method (as in snesim) to honor the hard data consists in assigning the data to the closest nodes of the current grid level before simulating it. In this paper, another method (implemented in impala) that consists in assigning the hard data to the closest nodes of the simulation grid (fine level), and then in spreading them up to the coarse grid by using simulations based on the MPS inferred from the TI is presented in detail. We study the effect of conditioning and show that the first method leads to systematic biases depending on the location of the conditioning data relative to the grid levels, whereas the second method allows for properly dealing with conditional simulations and a multiple grid approach.
  • Publication
    Accès libre
    A practical guide to performing multiple-point statistical simulations with the Direct Sampling algorithm
    (2013-3)
    Meerschman, Eef
    ;
    ; ; ;
    Van Meirvenne, Marc
    ;
    The Direct Sampling (DS) algorithm is a recently developed multiple-point statistical simulation technique. It directly scans the training image (TI) for a given data event instead of storing the training probability values in a catalogue prior to simulation. By using distances between the given data events and the TI patterns, DS allows to simulate categorical, continuous and multivariate problems. Benefiting from the wide spectrum of potential applications of DS, requires understanding of the user-defined input parameters. Therefore, we list the most important parameters and assess their impact on the generated simulations. Real case TIs are used, including an image of ice-wedge polygons, a marble slice and snow crystals, all three as continuous and categorical images. We also use a 3D categorical TI representing a block of concrete to demonstrate the capacity of DS to generate 3D simulations. First, a quantitative sensitivity analysis is conducted on the three parameters balancing simulation quality and CPU time: the acceptance threshold t, the fraction of TI to scan f and the number of neighbors n. Next to a visual inspection of the generated simulations, the performance is analyzed in terms of speed of calculation and quality of pattern reproduction. Whereas decreasing the CPU time by influencing t and n is at the expense of simulation quality, reducing the scanned fraction of the TI allows substantial computational gains without degrading the quality as long as the TI contains enough reproducible patterns. We also illustrate the quality improvement resulting from post-processing and the potential of DS to simulate bivariate problems and to honor conditioning data. We report a comprehensive guide to performing multiple-point statistical simulations with the DS algorithm and provide recommendations on how to set the input parameters appropriately.
  • Publication
    Accès libre
    Parallel Multiple-point Statistics Algorithm Based on List and Tree Structures
    (2013-2) ;
    Walgenwitz, Alexandre
    ;
    Multiple-point statistics are widely used for the simulation of categorical variables because the method allows for integrating a conceptual model via a training image and then simulating complex heterogeneous fields. The multiple-point statistics inferred from the training image can be stored in several ways. The tree structure used in classical implementations has the advantage of being efficient in terms of CPU time, but is very RAM demanding and then implies limitations on the size of the template, which serves to make a proper reproduction of complex structures difficult. Another technique consists in storing the multiple-point statistics in lists. This alternative requires much less memory and allows for a straightforward parallel algorithm. Nevertheless, the list structure does not benefit from the shortcuts given by the branches of the tree for retrieving the multiple-point statistics. Hence, a serial algorithm based on list structure is generally slower than a tree-based algorithm. In this paper, a new approach using both list and tree structures is proposed. The idea is to index the lists by trees of reduced size: the leaves of the tree correspond to distinct sublists that constitute a partition of the entire list. The size of the indexing tree can be controlled, and then the resulting algorithm keeps memory requirements low while efficiency in terms of CPU time is significantly improved. Moreover, this new method benefits from the parallelization of the list approach.