Options
Aellen, Mélisande
Nom
Aellen, Mélisande
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
1 Résultats
Voici les éléments 1 - 1 sur 1
- PublicationAccès libreWhat the cognitive abilities of the cleaner fish "Labroides dimidiatus" may tell us about vertebrate brain evolution(2020)
; La grande variation existant chez les vertébrés concernant la taille relative du cerveau en comparaison à la taille du corps a toujours été un challenge scientifique majeur ; les scientifiques ont tenté de comprendre quels facteurs y étaient impliqués, ainsi que l’implication d’avoir un plus grand cerveau, autrement dit est-ce que la taille du cerveau est liée aux capacités cognitives ? Plusieurs hypothèses comme celle de l’intelligence sociale (social brain), de l’intelligence écologique (ecological intelligence), ainsi que plus récemment celle de l’intelligence générale (general intelligence) présentent différents facteurs qui pourraient expliquer cette variation. Pourtant, les résultats obtenus jusqu’à maintenant peuvent souvent être interprétés comme soutenant différentes hypothèses, démontrant que des études supplémentaires sont nécessaires pour trouver quels facteurs sélectifs sont les principaux vecteurs de l’évolution cérébrale. Le fait que la taille cérébrale relative diffère en moyenne d’un facteur 10 entre les endo- et les ectothermes, c’est-à-dire qu’un ectotherme qui a le même poids qu’un endotherme possède un cerveau 10 fois plus petit, est particulièrement intriguant. Alors qu’autant les ecto- que les endothermes font face à des challenges aussi bien sociaux qu’environnementaux, nous devons comprendre quels aspects sont d’une différence si fondamentale qu’un facteur 10 apparaisse. C’est pourquoi les processus cognitifs sont étudiés dans différentes espèces animales, via des tâches écologiques ou abstraites pour tester leur relation à la taille cérébrale, et si ces processus cognitifs sont liés à l’intelligence générale. Ma thèse de doctorat avait pour objectif d’enquêter si le poisson nettoyeur Labroides dimidiatus, une espèce avec une taille cérébrale moyenne chez les ectothermes, démontre des capacités cognitives dîtes avancées. Ce poisson nettoyeur interagit de manière mutualiste avec d’autres poissons du récif corallien, communément appelés ‘poissons clients’. Il ôte les parasites externes (ectoparasites) se trouvant sur la peau des poissons clients, constituant ainsi leurs ressources alimentaires. De ce fait, les poissons clients sont nettoyés de leurs parasites. Cependant, le poisson nettoyeur a une préférence gustative pour le mucus des poissons clients par rapport aux ectoparasites ; dans ce cas l’interaction n’est plus considérée comme mutualiste n’étant plus bénéfique pour le poisson client, ce qui est considéré comme de la triche. À cause de ce comportement de triche, le poisson nettoyeur démontre de grandes stratégies comportementales sophistiquées, qui ont été documentées précédemment, comme par exemple l’effet d’audience, la gestion de sa réputation, et la priorisation des différents types de poissons clients afin de les maintenir dans leur territoire. Premièrement, les capacités cognitives étaient testées séparément puis avec ou sans pertinence écologique pour le poisson nettoyeur. Avec cette première approche, j’ai pu découvrir si le poisson nettoyeur était capable de démontrer des capacités cognitives uniquement dans un contexte écologique ou s’il était également capable d’en démontrer dans un contexte plus abstrait. Deuxièmement, j’étais intéressée de tester la présence d’intelligence générale chez les ectothermes en expérimentant cette fois-ci différents processus cognitifs. Quatre tâches cognitives n’avaient aucune pertinence écologique et une était liée à l’écologie du poisson nettoyeur en question. Dans le premier chapitre, j’ai étudié le comportement des poissons dans un paradigme de gratification différée. Dans ledit paradigme, il a été démontré que les primates révèlent une performance élevée qui a été liée au haut niveau de maîtrise de soi, ainsi qu’à la compréhension de la remise de bénéfice dans le futur, affirmant ainsi la demande cognitive de cette tâche. J’ai travaillé avec deux espèces de poissons nettoyeurs (L. dimidiatus et L. bicolor), ainsi que deux espèces de poissons non-nettoyeurs de la famille des Labres (Halichoeres trimaculatus and H. hortulanus). Les deux espèces de poissons nettoyeurs diffèrent dans leur écologie : L. dimidiatus habitent dans des stations de nettoyage permettant les clients de décider dans quelle station ils veulent se faire nettoyer et par quel poisson nettoyeur. En revanche, L. bicolor ont un territoire plus grand et dépourvu de stations de nettoyage. Ce comportement dit errant permet à L. bicolor de tricher et ce plus souvent envers les poissons clients étant donné que ces derniers ne peuvent se remémorer par quel poisson nettoyeur ils ont été nettoyés. Les deux espèces de poissons non-nettoyeurs se nourrissent, quant à eux, de petits crustacés qu’ils trouvent dans le sable. Je me suis demandée si l’écologie spécifique des poissons nettoyeurs augmenterait leur performance par rapport à celle des poissons non-nettoyeurs qui n’ont aucune raison écologique pour réussir autant bien que les poissons nettoyeurs. Toutes les différentes espèces de poisson testées dans ce paradigme ont réussi de manière égale à contrôler leur impulsion envers la nourriture pour en obtenir plus. En revanche, seulement les poissons nettoyeurs ont démontré une compréhension de la tâche en prenant préalablement la décision d’attendre ou non pour obtenir plus de nourriture, démontrant ainsi leur capacité d’anticipation. Dans le second chapitre, L. dimidiatus a été testé selon une expérience abstraite sur l’apprentissage de concept, soit une approche classique pour tester si les animaux peuvent apprendre sans de renforcement spécifique (conditionnement). L’appariement à l’échantillon (matching-to-sample) a été utilisé comme expérience, dans sa forme la plus générale, par rapport à ce qui avait déjà été fait. Les poissons nettoyeurs ont rempli les conditions de réussite de cette tâche, nous démontrant ainsi qu’ils possèdent le processus cognitif de l’apprentissage de concept, autrement dit la capacité de raisonnement. De plus, un poisson a été testé dans un appariement à l’échantillon différé (delayed matching-to-sample) ; il a cependant échoué dans cette expérience. Du fait qu’un seul poisson a été testé dans cette dernière tâche, il est difficile de conclure que les poissons nettoyeurs ne possèdent pas le processus cognitif de la mémoire de travail (working memory). Finalement, dans le troisième chapitre, L. dimidiatus ont été exposés à différentes tâches conçues pour tester l’intelligence générale. Les performances relatives à chaque tâche étaient respectivement évaluées et notées afin de vérifier la présence ou non d’un facteur d’intelligence générale dit ‘g’ (general intelligence factor). Un aspect intéressant est que la variation intra spécifique dans les stratégies dites sophistiquées est liée à la densité de poissons indiquant une probable corrélation de la complexité intra- et interspécifique. Dès lors que ces stratégies étaient mises en relation à l’écologie du poisson nettoyeur, la question principale était de savoir si les performances des poissons nettoyeurs variaient dépendamment de la tâche écologiquement pertinente ou non. De ce fait, la moitié des individus venait d’une forte densité de poissons, tandis que l’autre moitié provenait d’une faible densité de poissons. Les poissons nettoyeurs ont démontré des capacités dans trois processus cognitifs sur quatre, c’est-à-dire en apprentissage et flexibilité, en inhibition, ainsi qu’en raisonnement quantitatif ; mais, ils échouèrent dans la tâche de la mémoire de travail (working memory). Quand bien même les poissons nettoyeurs ont démontré de bonnes performances dans ces différentes tâches, je n’ai pas trouvé une forme d’intelligence générale chez ce poisson ; les différentes tâches n’étant pas positivement corrélées entre elles dans une analyse de facteur de composant principal. De plus, la complexité de l’environnement, c’-est-à-dire la densité de poissons, n’a pas affecté la performance des poissons nettoyeurs et ce dans aucune des tâches. En conclusion, cette thèse augmente l’évidence que les poissons nettoyeurs, comme représentants des ectothermes avec un cerveau relativement plus petit comparé aux endothermes, possèdent une variété de processus cognitifs considérés comme avancés, qu’ils peuvent appliquer à des situations non-écologiquement pertinentes. De ce fait, les résultats de cette thèse réfutent l’hypothèse que les majeures différences dans les capacités cognitives expliquent la différence d’un facteur 10 dans la taille relative du cerveau entre les vertébrés dits endothermes et ceux dits ectothermes. Cependant, malgré les capacités cognitives avancées des poissons nettoyeurs, ils sont dépourvus d’intelligence générale. Ce résultat nous amène à se poser la question de savoir si l’absence d’intelligence générale est un élément commun des ectothermes. Si ceci est confirmé, l’intelligence générale pourrait fournir une nouvelle explication quant à la division dans l’index d’encéphalisation entre endothermes et ectothermes. ABSTRACT Explaining the great variation in relative brain size in comparison to body size among vertebrates has been a great scientific challenge. Scientists have tried to understand what factors triggered this relative difference, as well as what it implies to have a bigger brain, i.e. how is brain size linked to cognitive abilities? Various hypotheses such as the social brain hypothesis, the ecological intelligence hypothesis, as well as most recently the general intelligence hypothesis propose different factors that could explain this variation. However, current results can often be interpreted as supporting various hypotheses, showing that additional studies are needed in order to disentangle which selective factors are the main driver of brain evolution. Particularly intriguing is the observation that relative brain size differs on average by a factor 10 between endo- and ectotherms, i.e. an ectotherm of the same weight of an endotherm possesses a ten times smaller brain. Thus, while both ecto- and endotherms face social and environmental challenges, we need to understand what aspects are of such fundamental difference that a factor 10 emerges. Therefore, cognitive processes are studied in various animal species via ecological or abstract task to test their relationship to brain size, and whether cognitive processes are linked to general intelligence. My PhD thesis aimed to investigate whether cleaner fish Labroides dimidiatus, a species with a rather average ectotherm brain size, show advanced cognitive abilities. Cleaner fish engage in mutualistic interactions with so-called client fish. They remove the ectoparasites from their clients, constituting their food resources, and clients, in turn, get cleaned. However, cleaners prefer to eat mucus over ectoparasites constituting cheating. Because of this cheating behaviour, cleaners show great sophisticated strategies behaviour previously documented, such as audience effect, reputation management, and client type prioritization in order to retain their clients. First, cognitive processes were tested separately and with or without ecological relevance to the fish. With this first approach, I was able to disentangle whereas cleaner fish were also able to show cognitive abilities only in an ecological context or also in an abstract situation. Second, I was interested in testing the presence of general intelligence in ectotherms by testing this time different cognitive processes. Four cognitive tasks were lacking ecological relevance and one was related to cleaners’ ecology. In the first chapter, I tested fish in a delay of gratification paradigm. High performance in primates has been linked to high levels of self-control and low discounting of future benefits, proposing that the ability is cognitively demanding. I used two cleaner fish species (L. dimidiatus and L. bicolor), and noncleaner wrasse species (Halichoeres trimaculatus and H. hortulanus) were used. Cleaner fish species differ in their ecology as L. dimidiatus live at cleaning stations, allowing clients to decide whether to seek or avoid any particular cleaner. In contrast, L. bicolor are roving cleaners lacking cleaning stations. Such roving behaviour allows L. bicolor to cheat more towards their clients as these ones are not capable of following the cleaners bicolor individually. Both non-cleaner wrasses eat small crustaceans in the sand. I asked whether the special ecology of cleaners would increase their performance compared to non-cleaners which lack any ecological reason to perform well in this task. Fish species performed well at controlling their impulse toward food in order to get more. In contrast, only cleaners show an understanding of the task by making the decision early on to wait or not for a bigger food reward, showing the ability to anticipate. In the second chapter, L. dimidiatus were tested in an abstract experimental design of concept learning, a classic approach to test whether animals can learn without specific reinforcement (conditioning). The matching-to-sample task was used in the most general form compared to previous experiments. Cleaners overall performed above chance in this task, suggesting that they possess the cognitive process of concept learning, i.e. reasoning ability. Furthermore, one individual was tested in a delayed matching-to-sample experiment but did not succeed. As only one individual was tested, it is rather difficult to conclude that cleaners lack working memory cognitive process. Finally, in the third chapter, L. dimidiatus individuals were exposed to different tasks designed to test for general intelligence, and their performances in each task were ranked to check for the presence/absence of ‘g’. Interestingly, intraspecific variation in sophisticated strategies were linked to fish densities as a likely correlate of intra- and interspecific complexity. Since those strategies were related to cleaners' ecology, the main question was whether cleaners' performances vary depending on if the task was ecologically relevant or not. Therefore, half of the individuals were coming from a high fish density and the other half from a low fish density. Cleaners showed abilities in three out of four cognitive processes, i.e. learning-flexibility, inhibition, and quantitative reasoning. They failed in the working memory task. Even though cleaners performed well in the tasks, I found no evidence for general intelligence, i.e. the tasks were not positively loading on a single main principal component factor. Moreover, the complexity of the environment, i.e. fish density, did not affect cleaners' performance in any task. In conclusion, this thesis increases evidence that cleaner fish, as representatives of ectotherms with relatively smaller brains compared to endotherms, possess a variety of supposedly advanced cognitive processes, which they can also apply to non-ecologically relevant situations. Therefore, the results from this thesis refute the hypothesis that major differences in the cognitive tool set may explain the 10-fold difference in relative brain size between endotherm and ectotherm vertebrates. However, despite cleaners' advanced cognitive abilities, they lack general intelligence. This result raises the question of whether the absence of general intelligence is a common pattern in ectotherms. If this was confirmed, general intelligence may provide a new explanation for the endotherm-ectotherm divide in the encephalization index.