Options
Süss-Fink, Georg
Résultat de la recherche
Synthesis and Anticancer Activity of Long-Chain Isonicotinic Ester Ligand-Containing Arene Ruthenium Complexes and Nanoparticles
2010, Süss-Fink, Georg, Khan, Farooq-Ahmad, Juillerat-Jeanneret, Lucienne, Dyson, Paul J., Renfrew, Anna K.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).
Arene–ruthenium complexes with ferrocene-derived ligands: Synthesis and characterization of complexes of the type [Ru(η6-arene)(NC5H4CH2NHOC-C5H4FeC5H5)Cl2] and [Ru(η6-arene)(NC3H3N(CH2)2O2C–C5H4FeC5H5)Cl2]
2009, Auzias, Mathieu, Gueniat, Joël, Therrien, Bruno, Süss-Fink, Georg, Renfrew, Anna K., Dyson, Paul J.
Arene–ruthenium complexes of general formula [Ru(η6-arene)(L)Cl2] where L = NC5H4CH2NHOC-C5H4FeC5H5, arene = p-iPrC6H4Me (1) or C6Me6 (2); L = NC3H3N(CH2) 2O2C–C5H4FeC5H5, arene = p-iPrC6H4Me (3) or C6Me6 (4), and diruthenium–arene complexes of general formula [Ru(η6-arene)Cl2] 2 (L) where L = 1,1′-(NC5H4CH2NHOC)2-C5H4FeC5H4, arene = p-iPrC6H4Me (5) or C6Me6 (6); L = 1,1′-(NC3H3N(CH2)2O2C)2–C5H4FeC5H4, arene = p-iPrC6H4Me (7) or C6Me6 (8) have been synthesized and characterized. The molecular structures of 1 and 3 were confirmed by single-crystal X-ray diffraction. The in vitro anticancer activities of complexes 1–8 have been studied comparatively to the uncoordinated ligands. The complexes exhibit fairly low cytotoxicities in comparison to related ferrocene-derived arene–ruthenium complexes.
Water-soluble arene ruthenium complexes containing pyridinethiolato ligands: Synthesis, molecular structure, redox properties and anticancer activity of the cations [(η6-arene)Ru(p-SC5H4NH)3]2+
2008, Gras, Michaël, Therrien, Bruno, Süss-Fink, Georg, Štěpnička, Petr, Renfrew, Anna K., Dyson, Paul J.
The cationic complexes [(η6-arene)Ru(SC5H4NH)3]2+, arene being C6H6 (1), MeC6H5 (2), p-iPrC6H4Me (3) or C6Me6 (4), have been synthesised from the reaction of 4-pyridinethiol with the corresponding precursor (η6-arene)2Ru2 (μ2-Cl)2Cl2 and isolated as the chloride salts. The single-crystal X-ray structure of [4](PF6)2 reveals three 4-pyridinethiol moieties coordinated to the ruthenium centre through the sulphur atom, with the hydrogen atom transferred from the sulphur to the nitrogen atom. The electrochemical study of 1–4 shows a clear correlation between the Ru(II)/Ru(III) redox potentials and the number of alkyl substituents at the arene ligand (E°′ (RuII/III): 1 > 2 > 3 > 4), whereas the cytotoxicity towards A2780 ovarian cancer cells follows the series 4 > 1 > 3 > 2, the hexamethylbenzene derivative 4 being the most cytotoxic one. The corresponding reaction of the ortho-isomer, 2-pyridinethiol, with (η6-C6Me6)2Ru2 (μ2-Cl)2Cl2 does not lead to the expected 2-pyridinethiolato analogue, but yields the neutral complex (η6-C6Me6)Ru(η2-SC5H4N)(η1-SC5H4N) (5). The analogous complex (η6-C6Me6)Ru(η2-SC9H6N)-(η1-SC9H6N) (6) is obtained from the similar reaction with 2-quinolinethiol.