Voici les éléments 1 - 10 sur 170
  • Publication
    Accès libre
    Metallic Ruthenium nanoparticles intercalated in hectorite for highly selective catalytic hydrogenations
    (2015)
    Sun, Bing
    ;
    The design of nanocomposites consisting of functional metals and proper matrices is a very active field of research for the development of recyclable catalysts. Highly active metallic nanoparticles must be stabilized by a suitable support in order to prevent aggregation to bulk metal. Hectorite, a representative smectite clay featured by its unique swelling properties and flexible intercalation capacity, provides an ideal platform for immobilizing metal nanoparticles.
    By intercalating organometallic benzene ruthenium complexes or Werner-type ruthenium(III) ions from RuCl3 ∙ xH2O as precursor, ruthenium nano¬particles intercalated in hectorite are successfully obtained via a reduction process with molecular hydrogen approach or sodium borohydride. Depending on the properties of solvents and the reduction conditions, a variety of ruthenium nanoparticles with different morphology are formed.
    In the catalytic hydrogenation of quinoline, hectorite-intercalated ruthenium nanoparticles show excellent reactivity and selectivity to the specific product. By using water or cyclohexane as reaction medium under a certain pressure of molecular H2, 1,2,3,4-tetrahydroquinoline and decahydroquinoline were exclusively obtained, respectively. Furthermore, by using sodium borohydride as reducing agent, the catalytic hydrogenation of quinoline proceeds in water under atmospheric pressure with the conversion and selectivity superior to 99%. Isotope labeling experiments combined with semi-empirical calculations reveal that both the sodium borohydride and water participate in the hydrogenation process by means of hydride transfer and proton transfer, respectively.
    Furthermore, hectorite-intercalated ruthenium nanoparticles can also be used for the hydrogenation of aromatic amino acids in aqueous media. By screening of the influencing factors, the pH of the solution was found to be critical for the complete conversion of aromatic amino acids. Critically, during the hydrogenation process, the chirality of the substrates remains unchanged.
  • Publication
    Accès libre
    Thiolato-bridged arene ruthenium complexes as anticancer agents
    (2015)
    Stíbal, David
    ;
    Cancer is a major cause of morbidity and mortality in today’s world, affecting populations in all countries and all regions. Although no drug or treatment able to cure cancer in all of its forms and variations was found so far, the clinical advancements of 20th and 21st century provided a number of effective drugs for specific types of cancers and had a significant effect on the survival and the quality of life of patients. One of these drugs, the platinum-based complex cisplatin, achieved almost 100% cure rate of testicular cancer, not only saving lives of thousands of patients every year but also overturning a paradigm of medicinal chemistry – it was the first metal-based anticancer drug used in the clinic. The success of cisplatin encouraged the search for new metal-based anticancer agents, which soon expanded to other metals, such as ruthenium. During the last three decades, numerous ruthenium-based compounds with interesting anticancer properties were prepared and thoroughly investigated, two of which (NAMI-A and KP1019) were ultimately introduced into clinical trials, showing the potential of ruthenium complexes in cancer therapy.
    The goal of the presented thesis was to investigate the properties of dinuclear arene ruthenium thiolato-bridged complexes and to establish their potential as anticancer drugs. In the first part of the thesis, several monothiolato, dithiolato and trithiolato complexes were synthesized and evaluated for their stability and reactivity with biological substrates. The results were correlated with the in vitro anticancer activity of the three types of complexes and showed the most stable trithiolato complexes to be the most active against ovarian cancer cell lines. Subsequently, the most active trithiolato derivative, diruthenium-1, was thoroughly investigated in vitro and in vivo to establish the mode of action of this complex, showing its promising ability to influence the tumor growth and to prolong the survival of tumor-bearing mice.
    In the second part of this thesis, three series of conjugates of the mixed trithiolato complexes were synthesized to demonstrate the potential of the coupling of dinuclear arene ruthenium complexes with biologically active organic molecules. Thus, the thiolato-bridged complexes were coupled with propargyl bromide, the resulting conjugates being available for the 1,3-Huisgen addition with tumor targeting compounds. Conjugates with ibuprofen were synthesized to investigate the effect of the antiinflamatory agent on the activity and selectivity of the resulting complexes towards cancer cells. Finally, conjugates of dinuclear trithiolato arene ruthenium complexes with alkylating agent chlorambucil were synthesized to show the effect of the two different modes of action of the conjugates on their activity in vitro and in vivo.
    These results demonstrate the potential of the dinuclear thiolato-bridged arene ruthenium complexes as a versatile platform for the synthesis of anticancer agents with variable biological properties and modes of action.
  • Publication
    Accès libre
    Encapsulation of Photosensitizers in Hexa- and Octanuclear Organometallic Cages: Synthesis and Characterization of Carceplex and Host-Guest Systems in Solution
    Cationic arene ruthenium assemblies of the general formulas [Ru6(p-cymene)6(tris-pvb)2(?2-Cl)6]6+, [Ru6(p-cymene)6(tris-pvb)2(OO?OO)3]6+ (tris-pvb = 1,3,5-tris{2-(pyridin-4-yl)vinyl}benzene), and [Ru8(p-cymene)8(NN?NN)2(OO?OO)4]8+ (NN?NN = 1,2,4,5-tetrakis{2-(pyridin-4-yl)vinyl}benzene, 1,2,4,5-tetrakis{2-(pyridin-4-yl)ethynyl}benzene) have been obtained from the corresponding dinuclear arene ruthenium complexes [Ru2(p-cymene)2(?-Cl)2Cl2] and [Ru2(p-cymene)2(OO?OO)Cl2] (OO?OO = oxalato, 2,5-dioxido-1,4-benzoquinonato, 2,5-dichloro-1,4-benzoquinonato, 5,8-dioxido-1,4-naphthoquinonato, 5,8-dioxido-1,4-anthraquinonato, 6,11-dioxido-5,12-naphthacenedionato) by reaction with the multidentate ligands and silver trifluoromethanesulfonate. These cationic hexa- and octanuclear cages have been isolated and characterized as their triflate salts. Addn. of coronene during the synthesis of the large hexanuclear assemblies leads to the direct encapsulation of coronene in the cavity of the trigonal-prismatic complexes. Photosensitizers such as porphin, phthalocyanine, and Zn-phthalocyanine present during the synthesis of these metalla-cages are encapsulated in five of these arene ruthenium complexes to give photosensitizer-encapsulated systems. The host-guest properties of these systems were studied in soln. by DOSY, 2D NOESY and 2D ROESY NMR spectroscopy. The H···H distances between guests and selected metalla-cages were estd. by 2D ROESY NMR spectroscopy and modelization. NMR analyzes indicate that the guest photosensitizers are completely encapsulated in two of these metalla-cages, while in the three other ruthenium cages NMR spectra reveal an equil. between empty and filled cages. [on SciFinder(R)]
  • Publication
    Accès libre
    Organometallic Cages as Vehicles for Intracellular Release of Photosensitizers
    (2012)
    Schmitt, Frédéric
    ;
    ;
    Barry, Nicolas P.E.
    ;
    Juillerat-Jeanneret, Lucienne
    ;
    ;
    Water-soluble metalla-cages were used to deliver hydrophobic porphin molecules to cancer cells. After internalization, the photosensitizer was photoactivated, significantly increasing the cytotoxicity in cells. During the transport, the photosensitizer remains nonreactive to light, offering a new strategy to tackle overall photosensitization, a limitation often encountered in photodynamic therapy.
  • Publication
    Accès libre
    Thiolato-Bridged Arene–Ruthenium Complexes: Synthesis, Molecular Structure, Reactivity, and Anticancer Activity of the Dinuclear Complexes [(arene)2Ru2 (SR)2Cl2]
    (2012)
    Ibao, Anne-Flore
    ;
    Gras, Michaël
    ;
    ; ;
    Zava, Olivier
    ;
    Dyson, Paul J.
    Treatment of an arene–ruthenium dichloride dimer with thiols RSH to lead to cationic trithiolato complexes of the type [(arene) 2Ru2(SR)3]+ was shown to proceed through the neutral thiolato complexes [(arene)2Ru2(SR)2Cl2], which have been isolated and characterized for arene = p-MeC6H4iPr and R = CH2Ph (1), CH2CH2Ph (2), CH2C6H4-p-tBu (3), and C6H11 (4). The single-crystal X-ray structure analysis of the p-tert-butylbenzyl derivative 3 reveals that the two ruthenium atoms are bridged by the two thiolato ligands without a metal–metal bond. The neutral dithiolato complexes[(arene)2Ru2(SR)2Cl2] (1–3) are intermediates in the formation of the cationic trithiolato complexes [(arene)2Ru2(SR)3]+ (5–7). Of the new [(arene)2Ru2(SR)2Cl2] complexes, derivative 2 is highly cytotoxic against human ovarian cancer cells, with IC50 values of 0.20 μM for the A2780 cell line and 0.31 for the cisplatin-resistant cell line A2780cisR.
  • Publication
    Accès libre
    Superparamagnetic Core-Shell-Type Fe3O4/Ru Nanoparticles as Catalysts for the Selective Hydrogenation of an Unconstrained α,β-Unsaturated Ketone
    (2012)
    Khan, Farooq-Ahmad
    ;
    Superparamagnetic core-shell-type Fe3O4/Ru nanoparticles (particle size ca. 15 nm) synthesized by co-precipitation, adsorption and reduction methods were found to selectively hydrogenate the carbon-oxygen double bond in trans-4-phenyl-3-penten-2-one (conversion 100 %, selectivity > 90 %) with a catalytic turnover of 900 under mild reaction conditions (30 °C, 15 bar H2). The finely dispersed catalyst can be separated from the reaction mixture by using an external magnet, recycled, and reused without significant loss of activity and selectivity.
  • Publication
    Accès libre
    Metallic ruthenium nanoparticles derived from arene ruthenium complexes: synthesis, characterization and applications
    (2012)
    Khan, Farooq-Ahmad
    ;

    The present work deals with the preparation of ruthenium nanoparticles using an organometallic approach. In the first part, the synthesis of ruthenium nanoparticles stabilized by mesogenic isonicotinic ester ligands is presented. We have been interested in the use of long-chain isonicotinic esters as lipohilic components in order to increase the anticancer activity of arene ruthenium complexes, while using them as stabilizers for ruthenium nanoparticles with the aim of exploring self-organization and biological (anticancer) properties of these new hybrid materials. The ruthenium nanoparticles thus obtained as well as their organometallic precursors showed anticancer activity comparable to cisplatin or superior to cisplatin in the cancer cell lines A2780 and cisplatin-resistant cell line A2780cisR, the highest cytotoxicity being 0.179 µM, a value 9 fold lower than cisplatin – a platinum-based chemotherapy drug widely used to treat different types of cancers.

    In second part, silicate-supported ruthenium nanoparticles with a special emphasis on hectorite-supported Ru(0) is presented. Size- and shape-selective preparation of hectorite-supported ruthenium nanoparticles was achieved by using either molecular hydrogen or solvothermal reduction route employing different organometallic precursors. The catalytic efficiency of these nanoparticles was evaluated for different arenes, furfuryl alcohol and α,β-unsaturated ketones. Hectorite-supported ruthenium nanoparticles were found to be promising hydrogenation catalysts. It was observed that the modification of intercalated particles size and reaction conditions tune the catalytic activity for chemo-selective reactions. Thus, these nanoparticles preferentially reduce the C=C olefinic bond in α,β-unsaturated ketones at 35 °C. However, change in particle size results in high selectivity towards C=O bond of α,β-unsaturated ketones, if an excess of solvent is used at low temperatures. A selectivity > 98 % for an unconstrained α,β-unsaturated ketone, trans-4-phenyl-3-penten-2-one, was observed at 0 °C. This kind of selectivity is unique for a heterogeneous catalyst especially when the C=C olefinic bond in α, β-unsaturated moiety is sterically not hindered. It was believed that such a preferential C=O bond hydrogenation in α,β-unsaturated ketones was not possible with heterogeneous catalysts.

    In the last part, superparamagnetic core-shell-type Fe3O4/Ru nanoparticles (particle size ~ 15 nm), synthesized by co-precipitation, adsorption and reduction methods, are presented. Their catalytic efficiency for selective C=O hydrogenation in an unconstrained α,β-unsaturated ketone was evaluated using <>trans-4-phenyl-3-penten-2-one. These particles present a green and sustainable approach towards catalyst separation from the reaction mixture, as they can be efficiently separated from the reaction mixture by applying an external magnetic field.

    It was the aim of this study to develop metallic ruthenium nanoparticles stabilized by mesogenic isonicotinic ester ligands, intercalated in hectorite and supported on magnetite and to evaluate their catalytic and biological potential.
  • Publication
    Accès libre
    Complexes arène-ruthénium multinucléaires fluctuants: véhicules pour le transport intracellulaire de molécules cytotoxiques et photosensibilisantes
    Depuis plusieurs années, la thérapie photo-dynamique est pratiquée au quotidien pour soigner certaines tumeurs, comme le mélanome. La méthode consiste à traiter le patient au moyen d’un composé photosensible, indifféremment absorbé par les cellules normales et cancéreuses, ces dernières le retenant toutefois plus longtemps. Après plusieurs heures, le composé est activé par une exposition à la lumière, provenant généralement d’un laser. L’approche est moins invasive que la radiothérapie ou la chimiothérapie. Elle a pour principal avantage de ne détruire que les zones éclairées par le laser, en l’occurrence les cellules tumorales, préservant ainsi la plupart des tissus sains.
    La difficulté principale de cette technique réside dans la faible solubilité des substances photosensibles et de leurs réactivités accidentelles due à leurs excitations par la lumière du jour, causant des lésions cutanées non désirées. Les cages arène-ruthénium synthétisées durant ce travail de thèse permettent d’encapsuler des molécules photosensibles afin de les rendre solubles dans l’eau, mais aussi de protéger ces molécules photosensibles contre toute excitation lumineuse inopinée. De par son encapsulation dans la cage, la substance photosensible ne devient donc active qu’après sa libération de la cage et à condition d’être excitée par un laser approprié.
    Ce travail de thèse a permis le passage des systèmes d’inclusion permanente aux systèmes « hôte-invité », mais il a également permis l’extension de l’encapsulation d’agents anticancéreux à l’encapsulation de photosensibilisateurs. Plusieurs types de cages arène-ruthénium ont été synthétisés dans lesquelles ont été encapsulées trois différentes molécules photosensibles : la porphine, la phthalocyanine et la zinc-phthalocyanine. Pour le moment, des tests in vitro n’ont été effectués que sur la porphine et ont permis de déterminer une très forte activité anticancéreuse de cette molécule pour une faible exposition au laser, ce qui prouve la bonne libération de l’agent photosensibilisant dans les cellules cancéreuses. Ce travail de thèse a donc contribué au développement de complexes arène-ruthénium multinucléaires en tant que véhicules pour le transport intracellulaire de molécules cytotoxiques et photosensibilisantes.
  • Publication
    Accès libre
    Efficient Oxidation of Cysteine and Glutathione Catalyzed by a Dinuclear Areneruthenium Trithiolato Anticancer Complex
    (2011)
    Giannini, Federico
    ;
    Furrer, Julien
    ;
    The highly cytotoxic diruthenium complex [(p-MeC6H4Pri)2Ru2(SC6H4-p-Me)3]+ (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.
  • Publication
    Accès libre
    Template-Directed Synthesis of Hexanuclear Arene Ruthenium Complexes with Trigonal-Prismatic Architecture Based on 2,4,6-Tris(3-pyridyl)triazine Ligands
    Cationic arene ruthenium metalla-prisms of the general formula [Ru6(p-cymene)6(3-tpt)2(OOOO)3]6+ (3-tpt = 2,4,6-tris(3-pyridyl)-1,3,5-triazine; OO∩OO = 5,8-dioxido-1,4-naphthoquinonato [1]6+ or 6,11-dioxido-5,12-naphthacenedionato [2]6+) have been obtained from the corresponding dinuclear arene ruthenium complexes [Ru2(p-cymene)2(OOOO)Cl2] by reaction with 3-tpt, silver trifluoromethanesulfonate in the presence of an aromatic molecule (1,3,5-tribromobenzene, phenanthrene, pyrene, or triphenylene) that acts as a template. While the large template molecule triphenylene is permanently encapsulated in the metalla-prisms to give the complexes [triphenylene⊂1]6+ and [triphenylene⊂2]6+, 1,3,5-tribromobenzene can be removed in toluene, thus leaving the empty cages [1]6+ and [2]6+, which are isolated as their trifluoromethanesulfonate salts. In the case of the metalla-prism connected by the 5,8-dioxido-1,4-naphthoquinonato bridging ligands, the NMR spectrum reveals two isomers, 1a and 1b, the formation of which can be rationalized by means of multiple NMR experiments (one-dimensional, two-dimensional, ROESY, and DOSY). The empty and filled metalla-prisms, [1]6+, [2]6+, [template⊂1]6+, and [template⊂2]6+, have been characterized by NMR, UV−vis, and IR spectroscopy. The slow exchange processes of a guest molecule moving in and out of the cavity of cages [1]6+ and [2]6+ have been studied in solution with phenanthrene and pyrene. One-dimensional exchange spectroscopic (1D EXSY) measurements show that [phenanthrene⊂1]6+ is in a faster exchange regime than [phenanthrene⊂2]6+ and that phenanthrene is more easily exchanged than pyrene in cages [1]6+ and [2]6+, all observations being consistent with the portal size of the cages.