Voici les éléments 1 - 3 sur 3
Vignette d'image
Publication
Accès libre

How elevated pCO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions

2006, Jossi, Maryline, Fromin, Nathalie, Tarnawski, Sonia, Kohler, Florian, Gillet, François, Aragno, Michel, Hamelin, Jérôme

The response of total (DNA-based analysis) and active (RNA-based analysis) bacterial communities to a pCO2 increase under field conditions was assessed using two perennial grasses: the nitrophilic Lolium perenne and the oligonitrophilic Molinia coerulea. PCR- and reverse transcriptase-PCR denaturing gradient gel electrophoresis analysis of 16S rRNA genes generated contrasting profiles. The pCO2 increase influenced mainly the active and root-associated component of the bacterial community. Bacterial groups responsive to the pCO2 increase were identified by sequencing of corresponding denaturing gradient gel electrophoresis bands. About 50% of retrieved sequences were affiliated to Proteobacteria. Our data suggest that Actinobacteria in soil and Myxococcales (Deltaproteobacteria) in root are stimulated under elevated pCO2.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Soil microbial community changes in wooded mountain pastures due to simulated effects of cattle grazing

2005, Kohler, Florian, Hamelin, Jérôme, Gillet, François, Gobat, Jean-Michel, Buttler, Alexandre

The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates (TM)) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communities.

Vignette d'image
Publication
Accès libre

Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing

2005, Kohler, Florian, Hamelin, Jérôme, Gillet, François, Gobat, Jean-Michel, Buttler, Alexandre

The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates™) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communities.