Voici les éléments 1 - 10 sur 54
Vignette d'image
Publication
Accès libre

Finite quasisimple groups acting on rationally connected threefolds

2023-09-24, Blanc, Jérémy, Ivan Cheltsov, Alexander Duncan, Yuri Prokhorov

We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: $\mathfrak{A}_5$, $\operatorname{PSL}_2(\mathbf{F}_7)$, $\mathfrak{A}_6$, $\operatorname{SL}_2(\mathbf{F}_8)$, $\mathfrak{A}_7$, $\operatorname{PSp}_4(\mathbf{F}_3)$, $\operatorname{SL}_2(\mathbf{F}_{7})$, $2.\mathfrak{A}_5$, $2.\mathfrak{A}_6$, $3.\mathfrak{A}_6$ or $6.\mathfrak{A}_6$. All of these groups with a possible exception of $2.\mathfrak{A}_6$ and $6.\mathfrak{A}_6$ indeed act on some rationally connected threefolds.

Vignette d'image
Publication
Accès libre

Connected algebraic groups acting on Fano fibrations over P1

2022, Blanc, Jérémy, Enrica Floris

Vignette d'image
Publication
Accès libre

Birational self-maps of threefolds of (un)-bounded genus or gonality

2022, Blanc, Jérémy, Ivan Cheltsov, Alexander Duncan, Yuri Prokhorov

Vignette d'image
Publication
Accès libre

Dynamical degrees of affine-triangular automorphisms of affine spaces

2021, Blanc, Jérémy, Immanuel Van Santen

AbstractWe study the possible dynamical degrees of automorphisms of the affine space$\mathbb {A}^n$. In dimension$n=3$, we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space$\mathbb {A}^n$for somen, and we give the best possiblenfor quadratic integers, which is either$3$or$4$.

Vignette d'image
Publication
Accès libre

Automorphisms of P1-bundles over rational surfaces

2023, Blanc, Jérémy, Andrea Fanelli, Ronan Terpereau

In this paper we provide the complete classification of $\mathbb{P}^1$-bundles over smooth projective rational surfaces whose neutral component of the automorphism group is maximal. Our results hold over any algebraically closed field of characteristic zero.

Vignette d'image
Publication
Accès libre

Automorphisms of the affine 3-space of degree 3

2022, Blanc, Jérémy, Immanuel van Santen

Vignette d'image
Publication
Accès libre

Quotients of higher-dimensional Cremona groups

2021, Blanc, Jérémy, Stéphane Lamy, Susanna Zimmermann

Vignette d'image
Publication
Accès libre

Real forms of some Gizatullin surfaces and Koras-Russell threefolds

2023, Blanc, Jérémy, Anna Bot, Pierre-Marie Poloni

Vignette d'image
Publication
Accès libre

Bivariables and Vénéreau polynomials

2022, Blanc, Jérémy, Pierre-Marie Poloni

Vignette d'image
Publication
Accès libre

Connected Algebraic Groups Acting on three-dimensional Mori Fibrations

2021, Blanc, Jérémy, Andrea Fanelli, Ronan Terpereau

We study the connected algebraic groups acting on Mori fibrations $X \to Y$ with $X$ a rational threefold and $\textrm{dim}(Y) \geq 1$. More precisely, for these fibre spaces, we consider the neutral component of their automorphism groups and study their equivariant birational geometry. This is done using, inter alia, minimal model program and Sarkisov program and allows us to determine the maximal connected algebraic subgroups of $\textrm{Bir}(\mathbb{P}^3)$, recovering most of the classification results of Hiroshi Umemura in the complex case.